

Mastering openFrameworks:
Creative Coding Demystified

A practical guide to creating audiovisual interactive
projects with low-level data processing using
openFrameworks

Denis Perevalov

BIRMINGHAM - MUMBAI

Mastering openFrameworks:
Creative Coding Demystified

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2013

Production Reference: 1160913

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84951-804-8

www.packtpub.com

Cover Image by Asher Wishkerman (wishkerman@hotmail.com)

Credits

Author
Denis Perevalov

Reviewers
Mathias Paumgarten

Tim Pulver

Acquisition Editor
Nikhil Karkal

Lead Technical Editor
Sweny M. Sukumaran

Technical Editors
Sharvari Baet

Aparna Kumari

Hardik B. Soni

Copy Editors
Aditya Nair

Brandt D'Mello

Gladson Monteiro

Adithi Shetty

Project Coordinators
Shiksha Chaturvedi

Hardik Patel

Proofreader
Mario Cecere

Indexer
Priya Subramani

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

Foreword

Confuсius said, "Choose a job you love, and you will never have to work a day in
your life". Probably this piece of wisdom is meant right for you. Maybe you have
already found your vocation. Maybe you are just looking for it. Anyway there's
something that made you take this book. If so, let me tell you a little story.

My name is Igor Tatarnikov, also known as Sodazot. I'm an artist, although not
by my education, but rather by my way of life. I keep on looking for a new and
interesting occupation to take up. I've had different hobbies. I've tried a lot of jobs.

Three years ago I didn't even think about the interactive video, although my major
occupation at that time was making video clips. I used to employ the stop-motion
technique combined with computer animation. I also did some filming. By the by I
grew more and more interested in the live VJ performances and generative video. I
began experimenting with different techniques and posted my clips on the Internet.

At the same time there appeared the first available depth camera - Microsoft Kinect
on offer. After it, things went crazy. Hundreds of video clips with reviews and tests
of this camera's possibilities appeared every day on the Net. I took an interest in
it all and kept track of the news. Watching the possibilities displayed I got a lot of
new creative ideas. And finally my friends presented me the gadget. Of course I was
happy, but at first I lost my head and didn't know what to do with it.

Also, it was not long since one person had written me an e-mail asking for permission
to use my experimental video clip in his lecture for the students. I gladly agreed and
since then we've been communicating by e-mail. It happened that this man lived in
Ekaterinburg and we were thousands of kilometers apart.

As we communicated, we found a lot of common interests and decided to do
something together. My head was boiling with ideas. I drew lots of sketches,
shared them all with my friend, and he knew how to put them to life using the
openFrameworks toolkit. We took counsel and the discussions brought us even
more new ideas.

So we created our first commercial project for a special event at one of the Moscow
cinemas. It was a funny video installation, where the picture responded to the
visitor's movements. Coming up to the screen, a visitor saw himself as a funny
character. The visitors of the event liked it very much and our big customers were
happy—they played before the screen of the installation like children. We enjoyed
the result of the work and it inspired us to create something new.

We've been working together for two years since and we've made several interesting
and successful projects, using openFrameworks as our main tool. This is how our
visual laboratory Kuflex was created. Our projects now grow more complicated and
interesting, and our team became more and more numerous. We also work with
musicians, artists, dancers, architects, and we have recently created a project with a
real symphony orchestra.

If you still haven't guessed, I'll tell you that the friend with whom everything started
is the author of this book Denis Perevalov.

The content of the book is based on our experience of creating interactive
installations and performances. It teaches you the openFrameworks' multimedia
capabilities and the principles of their usage for building interactive projects, which
work with video, 3D graphics, sound, and cameras. The core of the book consists of
the real working examples of projects for openFrameworks. Some of them are based
on our works, the others were designed exclusively for this book. Besides, across the
text you will find hints that will help you avoid many pitfalls in the practical use of
openFrameworks.

Study openFrameworks, invent, and create your own projects and soon you'll realize
that you can implement practically everything you can imagine using it.

Igor (Sodazot) Tatarnikov,
Artist

About the Author

Denis Perevalov is a computer vision research scientist. He works at the Institute
of Mathematics and Mechanics of the Ural Branch of the Russian Academy of
Sciences (Ekaterinburg, Russia). He is the co-author of two Russian patents on
robotics computer vision systems and an US patent on voxel graphics. Since 2010 he
has taught openFrameworks in the Ural Federal University. From 2011 he has been
developing software for art and commercial interactive installations at kuflex.com
using openFrameworks. He is the co-founder of interactive technologies laboratory
expo32.ru (opened in 2012).

Acknowledgement

I would like to thank my family—wife Svetlana and son Timofey for their patience
and suggestions. And many thanks to my parents and grandparents for great
pirozhki, which was a necessary part of the book-writing process.

My creative coding experience and the desire to write the book appeared, thankfully,
to artist Igor Sodazot, who invented and designed most of the interactive installations,
which I program for him using openFrameworks. He is the coauthor of most of the
book's examples and its video/audio contents.

Thanks to my scientific supervisor Victor Borisovich Kostousov for expending so
many efforts to shape my scientific style of thinking and writing.

I would like to thank my colleagues working at interactive media art, experimental
music, and dance fields—Prof. Yoichi Nagashima, Tatyana Komarova, Ekaterina
Zharinova, and my first curator Ksenia Fedorova, for their teaching and influence.

And big thanks to my friends and scientific colleagues for supporting me and
helping me with ideas: Nikolay Mikhalev, Sergey Samuraev, Kirill Kostousov,
Fedor Kornilov, Elizaveta Sayfutdinova, and Prof. Pavel Konstantinovich Kuznetzov.

This book would be impossible without hard work on proof-reading by Angelina
Poptzova, and technical reviewing by Mathias Paumgarten and Tim Pulver.

Thanks to Packt Publishing, who made this book possible.

Thanks to the openFrameworks' creators and openFrameworks community for
developing this amazing toolkit.

All the book's examples were developed together with Igor Sodazot, except the Dancing
cloud example, which is based on the idea of nCode installation by Andrey Krel, Igor
Sodazot, Denis Perevalov, and Pavel Tikhonenko (2011, Moscow).

All the video and audio content for the examples were made by/with Igor
Sodazot, except:

Image sunflower.png, which was contributed by
©iStockphoto.com/Andrew Johnson

Music track surface.wav, which was contributed by Ilya Orange
(soundcloud.com/ilyaorange)

About the Reviewers

Mathias Paumgarten is a creative developer from Austria. He is currently living
and working in Santa Monica, California.

Starting with a background in Flash development, Mathias found his passion for
code-driven animation at a very young age. Over the years while working for and
at several agencies he has broadened his skillset by leaving the web platform and
working on installations using low-level languages such as C/C++.

After graduating with a Bachelor's degree at the University of Applied Sciences,
Salzburg, Austria, he decided to leave Austria while focusing on modern web
technologies such as HTML5 and JavaScript, currently working as a frontend
JavaScript developer.

Mathias has worked for several renowned agencies such as B-Reel, Soap Creative,
and Firstborn working on projects for Sony, Fox Entertainment, Pepsi Co., and
many more.

After receiving recognitions such as FWA and other awards, Mathias has also
contributed to publications such as HTML5 Games Most Wanted.

Tim Pulver is an interaction design student from Potsdam, Germany. As a teenager
he was fascinated by the demo scene and how people were able to transform code
into something beautiful. He now uses Processing, openFrameworks, and Arduino
to create interactive installations, data-visualizations, and user-interface prototypes.

One of his recent projects is interactive fulldome data visualization, where users can
playfully explore global crop production.

In another project, Tim wrote a program that translated an image of an eye based on
its structure into unique jewelry, which was printed out using a 3D printer.

He likes the idea of sharing and free culture. In 2011, he founded the electronic music
netlabel Yarn Audio, which supports sharing and remixing of released music. All the
cover artwork for this netlabel has been generated using custom made tools, too. You
can contact him at http://www.timpulver.de.

I would like to thank my family for their support and Hanna Schatz,
Paul Vollmer, Kim Albrecht, Fabian Althaus, and Martin von Lupin
for great collaboration.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

Table of Contents
Preface 1
Chapter 1: openFrameworks Basics 7

About openFrameworks 7
Use cases 8

Installing openFrameworks and running your first example 10
Installing on Windows 10

Microsoft Visual Studio 10
Code::Blocks (Windows) 12

Installing on Mac OS with Xcode 13
Installing on Linux with Code::Blocks 15
openFrameworks' folders 16

The examples folder 16
The apps folder 17
The addons folder 17

File structure of a project 18
Code structure of a project 19

main.cpp 19
testApp.h 20
testApp.cpp 21

setup() 22
update() 23
draw() 23
Other functions 24

Creating a new project 24
Creating a project from an existing example 24
Creating a project using Project Generator 25

Creating your first project – the Pendulum example 25
Running the book's examples 28
Basic utility functions 29
Summary 30

Table of Contents

[ii]

Chapter 2: Drawing in 2D 31
Drawing basics 31
The background color of the screen 32

Pulsating background example 33
Geometric primitives 34

The simplest example of a flower 35
Controlling the drawing of primitives 36

Using ofPoint 37
Operations with points 38
Using control points example 39

Coordinate system transformations 40
Flower with petals example 43

Colors 44
Operations with colors 45
Color modifications example 46

Drawing with an uncleared background 48
Using FBO for offscreen drawings 48

Spirals example 50
Playing with numerical instability 54

Screen grabbing 56
Additional topics 57
Summary 58

Chapter 3: Building a Simple Particle System 59
The basics of particle systems 60

Interaction types 60
Computing particles' physics 62
Rendering particles 63
Creating a particle system – summary 65

A single particle 66
Control parameters 67
Defining the particle functions 69
Implementing a particle in the project 72

An emitter 75
The attraction, repulsion, and spinning forces 78
Graphical user interface 81
Additional topics 81
Summary 82

Chapter 4: Images and Textures 83
Raster and vector images 83
Loading and drawing an image 84

Table of Contents

[iii]

Rotating images 87
Color modulation 90
Transparency 91
Creating and modifying images 96

Creating images 97
Modifying images 99

Working with the color of a single pixel 102
The functions for manipulating the image as a whole 104

Using ofTexture for memory optimization 105
Image warping and video mapping 107
Using images for internal calculations 110

An image as a mask 110
An image as a palette 111

Summary 112
Chapter 5: Working with Videos 113

Video basics 113
Playing a video file 115
Controlling the video playback 117
Processing a single video frame 118

The vertical lines image example 119
The replacing colors example 120

Processing multiple frames 123
Radial slit-scan example 124

Horizontal slit-scan 129
Discussing color interpolation 130

Processing a live video from the camera 131
The video synthesizer example 132

Using image sequence 137
Using image sequence example 138

Summary 143
Chapter 6: Working with Sounds 145

Sound basics 145
Playing sound samples 146

The bouncing ball example 149
The singing voices example 152

Generating sounds 155
The PWM synthesis example 158
Image-to-sound transcoder example 163

Using a microphone 168
The loop sampler example 170

Saving a recorded sample to the file 174

Table of Contents

[iv]

Getting spectral data from sound 175
Dancing cloud example 176

Summary 181
Chapter 7: Drawing in 3D 183

3D basics 183
Representation of 3D objects 184
3D scene rendering 184

Simple 3D drawing 186
The triangles cloud example 187

Using ofMesh 191
Enabling lighting and setting normals 193

Computing normals using the setNormals() function 194
Drawing sharp edges 196
Drawing line segments and points 197

Drawing line segments 197
Drawing points 198

Coloring the vertices 198
Texturing 199
Working with vertices 200
The oscillating plane example 201

The twisting knot example 204
Additional topics 209
Summary 209

Chapter 8: Using Shaders 211
Basics of shaders 211

Types of shaders 212
When to use shaders 213

Structure of a shader's code 215
A simple fragment shader example 217

Creating the fragment shader 217
The vertex shader 219
Embedding shaders in our project 220
Debugging shaders 223

Creating video effects with fragment shaders 223
Passing a float parameter to a shader 223

A simple geometrical distortion example 224
Passing the float array to the shader 226
Using Perlin noise in shaders 226

A liquify distortion example 226
Processing several images 228

A masking example 229

Table of Contents

[v]

An audio-reactive project example 230
Deforming objects with a vertex shader 231

Vertex shader 231
Fragment shader 233

Using vertex shader in our project 233
Using a geometry shader 235

The furry carpet example 235
Additional topics 237
Summary 238

Chapter 9: Computer Vision with OpenCV 239
Understanding computer vision and OpenCV 240
Using ofxOpenCv 241
Working with ofxCv images 243

Image initializing 243
Algebraic operations with images 245
Drawing functions 247
Access to pixels 247
Working with color planes and color spaces conversion 248
Motion detection from movies 249
Discussing the algorithm's parameters 254
Motion detection from live video 254

Image filtering 256
The image filtering example 257

Geometrical transformations of images 260
Perspective distortion removing example 263

Searching for objects in an image 265
Using the ofxCvContourFinder class for finding contours 266
An example for searching bright objects in video 267

Using OpenCV functions 271
Optical flow 273

Video morphing example 274
Summary 279

Chapter 10: Using Depth Cameras 281
Depth camera basics 282

Active infrared stereo cameras 283
Installing the ofxOpenNI addon 284
ofxOpenNI examples 286

Working with examples of depth images 286
Hand-tracking examples 287
User tracking examples 288

Table of Contents

[vi]

Creating interactive surface 289
Running the project 296

Additional topics 299
Summary 299

Chapter 11: Networking 301
Networking basics 301
Using OSC protocol 303

Sending data 304
Receiving data 306
Typical schemes of OSC usage 307

Using TCP protocol for streaming images 307
The streaming images example 308

Summary 310
Appendix A: Working with Addons 311

Addons basics 311
Addons in openFrameworks 313
Installing a non-core addon 313

Linking addons to a new project 314
Using Project Generator 315

Linking an addon to an existing project 317
List of selected addons 318
Summary 319

Appendix B: Perlin Noise 321
Perlin noise basics 321
Using the ofNoise() function 322
Space-coherent noise 325
Summary 327

Index 329

Preface
openFrameworks is a simple and powerful C++ toolkit designed to develop real-time
projects with focus on generating and processing graphics and sound. Nowadays,
this is a popular platform for experiments in generative and sound art and creating
interactive installations and audiovisual performances.

Mastering openFrameworks: Creative Coding Demystified covers programming
openFrameworks 0.8.0 for Windows, Mac OS X, and Linux. It provides a complete
introduction to openFrameworks, including installation, core capabilities, and addons.
Advanced topics like shaders, computer vision, and depth cameras are also covered.

You will learn everything you need to know to create your own projects, ranging
from simple generative art experiments to big interactive systems consisting of a
number of computers, depth cameras, and projectors.

This book focuses on low-level data processing, which allows you to create really
unique and cutting-edge works.

What this book covers
Chapter 1, openFrameworks Basics, covers installing openFrameworks, the structure of
openFrameworks projects, and creating the pendulum-simulation project.

Chapter 2, Drawing in 2D, explains the basics of two-dimensional graphics,
including drawing geometric primitives, working with colors and drawing in
the offscreen buffer. It also contains a generative art example of using numerical
instability for drawing.

Chapter 3, Building a Simple Particle System, teaches the basics of particle system
modeling and drawing. By the end of this chapter, you will build a fully featured
project that can be used as a sketch for further experiments with particles.

Preface

[2]

Chapter 4, Images and Textures, covers the principles of working with images,
including loading images from file; rendering it on the screen with different sizes,
color, and transparency; creating new images; and modifying existing images. It
also touches the basics of image warping and video mapping.

Chapter 5, Working with Videos, covers basic and advanced topics on playing, layering,
and processing videos, including playing video files, processing live video grabbed
from a camera, and working with image sequences. This chapter contains an
implementation of the slit-scan effect and a simple video synthesizer, which uses a
screen-to-camera feedback loop to create vivid effects on prerecorded videos.

Chapter 6, Working with Sounds, explains how to play sound samples, synthesize
new sounds, and get sounds from the microphone. It includes the project wherein
we generate music using bouncing-ball simulation, the PWM synthesizer, and the
image-to-sound transcoding. Finally, it teaches us how to use spectrum analysis for
creating an audio-reactive visual project.

Chapter 7, Drawing in 3D, covers representing, modifying, and drawing 3D objects.
It includes examples of drawing a sphere-shaped cloud of triangles, an oscillating
surface, and a twisting 3D knot.

Chapter 8, Using Shaders, explains how to use fragment, vertex, and geometry shaders
for creating 2D video effects and 3D object deformations.

Chapter 9, Computer Vision with OpenCV, teaches the basics of computer vision using
the OpenCV library. It explains how to perform filtering and correct perspective
distortions in images and how to look for motion areas and detect bright objects in the
videos. It includes an advanced example of using optical flow for video morphing.

Chapter 10, Using Depth Cameras, covers using depth cameras in openFrameworks
projects using the ofxOpenNI addon. It includes an example of the projector-camera
interactive system, which lets us draw abstract images on the wall. The example can
be used as a sketch for creating interactive walls, tables, and floors.

Chapter 11, Networking, covers how to use OSC and TCP protocols in your
openFrameworks projects for creating distributed projects that run on several
computers. It includes an image-streaming example.

Appendix A, Working with Addons, teaches the basic principles of addons, explains
how to link addons to your projects, and discusses some of the most useful addons.

Appendix B, Perlin Noise, explains the principles of using Perlin noise, which is
employed in many of the examples in the book.

Preface

[3]

What you need for this book
For working with this book's examples and creating your openFrameworks projects,
you need a computer with the Windows, Mac OS X, or Linux operating system.

You will also need to install some development environment (Visual Studio C++
Express, Xcode, or Code::Blocks) and openFrameworks itself. In the first chapter of
the book, you will find detailed instructions for installation. All required software
are free.

Some examples can require additional equipment:

• The video synthesizer example section in Chapter 5, Working with Videos, and the
The streaming images example section in Chapter 11, Networking, need a webcam
for grabbing live video. If you are using a laptop, it most probably has a
built-in webcam.

• The loop sampler example section in Chapter 6, Working with Sounds,
needs a microphone. If you are using a laptop, it most probably has
a built-in microphone.

• The furry carpet example section in Chapter 8, Using Shaders, uses a geometry
shader, and therefore needs a modern video card.

• The Creating interactive surface section in Chapter 10, Using Depth Cameras,
needs a depth camera like Microsoft Kinect, Asus Xtion, or PrimeSense
Carmine. Having a projector would be ideal, but is not compulsory.

Who this book is for
If you are a visual artist, designer, or programmer interested in creative coding with
openFrameworks, this book is for you. Basic knowledge of programming, such as
C++, Java, Python, or ActionScript, would be helpful.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Now you can call setNormals(mesh) and the normals will be computed."

Preface

[4]

A block of code is set as follows:

for (int i=0; i<16; i++) {
 table[i] = ofRandom(0, 255);
}

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

for (int i=0; i<16; i++) {
 table[i] = ofRandom(0, 255);
}

Any command-line input or output is written as follows:

ping 192.168.0.3

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Go to
http://www.codeblocks.org, click on the Downloads menu item, and click on
Download the binary release."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Preface

[5]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Downloading the color graphics PDF
For downloading the colored graphics of this book visit: http://www.packtpub.
com/sites/default/files/downloads/8048OS_ColoredImages.pdf

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Preface

[6]

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

openFrameworks Basics
In this chapter you will get acquainted with openFrameworks, learn its specifics and
cases when you should use it. Also you will study how to install openFrameworks,
run its examples, and make your first openFrameworks project:

• Installing openFrameworks and running your first example
• File structure of a project
• Code structure of a project
• Creating a first project – the Pendulum example
• Running the book's examples

About openFrameworks
openFrameworks is an open source C++ toolkit for creative coding. It was initially
released by Zachary Lieberman in 2005. Today openFrameworks is one of the main
creative coding platforms, which is actively developed by Zachary Lieberman, Theodore
Watson, and Arturo Castro with help from the openFrameworks community.

The current openFrameworks' version is 0.8.0.

The toolkit is indebted to two significant precursors: the Processing development
environment, created by Casey Reas, Ben Fry, and the Processing community; and the
ACU Toolkit, a privately distributed C++ library developed by Ben Fry and others in
the MIT Media Lab's Aesthetics and Computation Group.

openFrameworks' website is http://openframeworks.cc. It contains latest
downloads, documentation, tutorials, and forums.

openFrameworks Basics

[8]

The main purpose of openFrameworks is to provide users with an easy access
to multimedia, computer vision, networking, and other capabilities in C++ by
gluing many open libraries into one package. Namely, it acts as a wrapper for
libraries such as OpenGL, FreeImage, and OpenCV. The term wrapper means that
openFrameworks provides you with new functions and classes, and gives hints on
a project structure, but does not limit you. Namely, you can still use all of the C++
capabilities, and directly call functions from all of the linked libraries without using
the wrapper's classes.

openFrameworks is cross-platform compatible with Windows, Mac OS X, Linux,
iOS, and Android as the supported platforms. It means that if you develop a project
for one of the platforms, you can copy the source files and compile the project for
any other platform from the list. In the book we will cover developing a project for
Windows, Mac OS X, and Linux only. Though many of the examples considered will
work on mobile platforms too.

There are many great projects made with openFrameworks. Here are a few
"classical" ones:

• Funky Forest by Emily Gobeille and Theodore Watson, 2007 – the interactive
forest installation

• Body Paint by Mehmet Akten, 2009 – drawing on the wall by moving the
user's body

• Hand from Above by Chris O'Shea, 2009 – outdoor installation working on a
big billboard and interacting with pedestrians

Use cases
openFrameworks has the following architectural specifics:

• Its core is based around multimedia, including 2D and 3D graphics,
images, video, and sound. So openFrameworks is especially appropriate for
developing multimedia projects working in real-time environments.

• It works using C++ language, which implies that the code is compiled into
native machine instructions and hence works very fast. So it lets you create
computing-intensive, ground-breaking projects, using the top capabilities of
modern computing technologies.

Such specifics determine cases when you should and should not use openFrameworks
for a project development.

Chapter 1

[9]

You definitely can employ openFrameworks when:

• You need to make a creative coding project, such as an interactive
audio-visual installation or performance, which works with multimedia
in a nontrivial and custom way. Namely, such a project would render a
custom particle system, apply effects such as video morphing and slit-scan,
or even perform data transcoding.

• You need to create a project, which performs intensive data analysis, for
example, analyzing data from depth cameras.

Maybe you should not use openFrameworks when:

• The project is centered on working with visual controls such as buttons,
checkboxes, lists, and sliders. In this case the better option is in using
developing platforms like QT, Cocoa, or .Net.

openFrameworks contains a number of classes implementing
visual controls like buttons and sliders, which are great for
creating simple graphical user interfaces. But currently visual
interface is not the main focus of the openFrameworks' evolution.

• The project does not use multimedia or intensive computations a lot. For
example, if you just want to send simple commands to a robot, it is definitely
simpler to use Processing.

Though openFrameworks is an open source project, currently you can use
it for developing commercial projects (see details in the openFrameworks
license at http://www.openframeworks.cc/about/license.html).
To protect the project's content, to add licensing, and to create an installer,
you should use special additional software. Note that all of this software is
included in iOS and Android development kits, so commercial developing
for mobile platforms is quite easy.

openFrameworks Basics

[10]

Installing openFrameworks and running
your first example
Now we will consider how to install openFrameworks in Windows, Mac OS X, and
Linux, and execute one of the openFrameworks' examples.

Historically (and currently) openFrameworks works best in
Mac OS X. So when we use openFrameworks in interactive
performances, we often do it in Mac OS X. Because performance
is a short event (5 to 30 minutes), it is highly critical the software
works as maximally fast and stable as it can.
For interactive installations, which are exhibited for a longer time
(hours to months), and rare interruption in work is not so critical,
we use any OS, depending on the available hardware.

The installation files and setup guides for all supported operating systems are located
at http://www.openframeworks.cc/download/. Let's consider them in detail.

Installing on Windows
Within Windows 7 and 8 there are two choices of programming environments:
Microsoft Visual Studio and Code::Blocks. Microsoft Visual Studio is one of the
most popular environments in the world. It is very mature and stable. Many
libraries (included and not included in openFrameworks) are adopted for Visual
Studio. So if you are a novice in C++ programming, but you know that you need
to link additional libraries in your project, Visual Studio is the best option for you.

Code::Blocks is a more lightweight environment and some developers prefer to use
it. If you are a novice and just want to play with openFrameworks in simple projects,
you should probably to do it with Code::Blocks.

Microsoft Visual Studio
The current version of Microsoft Visual Studio is 2012. In general Microsoft
Visual Studio 2012 is a commercial software. But it has a lightweight free version,
Microsoft Visual Studio Express, which is full enough for developing projects with
openFrameworks.

Chapter 1

[11]

The installation steps are as follows:

1. Install Microsoft Visual Studio Express 2012 for Windows Desktop. Navigate
to http://microsoft.com, enter Visual Studio Express 2012 for
Windows Desktop download in the search line, and press Enter to start
searching. Click the Download button. When downloading page opens,
press the Install now button. Then you will go through the process of
installation. When installation is finished, run Visual Studio and register it
(registration is free).

2. Download the openFrameworks' archive. Go to http://www.
openframeworks.cc/download/ and download the version for Visual
Studio. The downloaded ZIP file should be named like of_v0.8.0_vs_
release.zip. Unzip the downloaded file; it will be a folder containing
openFrameworks. Move the folder to any location on your computer,
for example, C:\openFrameworks.

3. Let's compile and run some example to verify openFrameworks is
working correctly. Navigate to the examples/3d/pointCloudExample
openFrameworks folder and open pointCloudExample.sln in Visual Studio.

4. Press F7 to compile the project.
5. Press F5 to run the project.
6. You will see an application window with a boy's face made from 3D points

as shown in the following screenshot:

openFrameworks Basics

[12]

7. Press the left mouse button and move the mouse to rotate the face, or press
the right mouse button and move the mouse to scale the face.

To understand the code of the example you need to learn how to
work with images and 3D graphics, see Chapter 4, Images and Textures,
and Chapter 7, Drawing in 3D. For creating your own point cloud, for
example, from your own face, you need to learn how to work with
depth cameras, see Chapter 10, Using Depth Cameras. Also check out the
description of the project's files in the File structure of a project section.

8. Also, note the second window associated with the running application. It is
colored in black and possibly contains some text. This is a console window,
where openFrameworks writes various information, warnings, and errors.
When you have some problems, check the contents of this window.

9. Now press Esc for closing the application.

You have successfully run the openFrameworks example and now can develop your
own projects.

If you try to run a project made with Visual Studio on some other
computer, it will probably not start, and show an error message.
The possible reason is that you need to install Visual Studio
redistributables. To download it, go to http://microsoft.com,
enter Visual C++ Redistributable for Visual Studio
in the search line, and press Enter to start searching. Click on the
first search result and download the installation file.
Before installing the redistributables, try to run your project.
Maybe it will work.

Code::Blocks (Windows)
Code::Blocks is an open source development environment for Windows. The current
version is 12.11. The installation steps are as follows:

1. Install Code::Blocks. Go to http://www.codeblocks.org, click on the
Downloads menu item, and click on Download the binary release.
Then select the file to download, which includes mingw. For example,
codeblocks-12.11mingw-setup.exe.

Chapter 1

[13]

2. Install additions for Code::Blocks, which are needed for openFrameworks
working. Go to http://www.openframeworks.cc/setup/codeblocks/ and
see instructions in the Add files to MinGW section.

3. Download the openFrameworks archive. Go to http://www.openframeworks.
cc/download/ and download openFrameworks for Code::Blocks (Windows).
The downloaded ZIP file should be named like of_v0.8.0_win_cb_release.
Unzip the downloaded file; it will be a folder containing openFrameworks.
Move the folder to any location on your computer, for example, C:\
openFrameworks.

4. Let's compile and run an example to verify openFrameworks is
working correctly. Navigate to the examples/3d/pointCloudExample
openFrameworks folder and open pointCloudExample.workspace in
Code::Blocks.

5. The first time you open Code::Blocks it will ask you which compiler you
want to use. Be sure GNU GCC Compiler is selected and continue.

6. Press the Build button and then the Run button:

7. Follow the steps 6, 7, 8, and 9 from the Microsoft Visual Studio section.

Installing on Mac OS with Xcode
We will be using Mac OS X 10.8.4 and Xcode 4.6.3. The installation steps are
as follows:

1. Install Xcode by downloading it from the Mac App Store.
2. Download the openFrameworks archive. Go to http://www.openframeworks.

cc/download/ and download openFrameworks for Xcode. The downloaded
ZIP file should be named like of_v0.8.0_osx_release. Unzip the
downloaded file; it will be a folder containing openFrameworks. Move the
folder to any location on your computer, for example, on the desktop.

openFrameworks Basics

[14]

3. Let's compile and run some examples to verify openFrameworks is
working correctly. Navigate to the examples/3d/pointCloudExample
openFrameworks folder and open pointCloudExample.xcodeproj in Xcode.

4. The project in Xcode contains several schemes for building openFrameworks
and the example itself. For compiling your project, you need to select the
example's scheme. Check it out. If the current scheme is openFrameworks,
you will see the following button:

5. Click on it on the left-hand side and select the example project,
pointCloudExample:

6. Press Command + B to compile the project.
7. Press the Run button.

8. Follow the steps 6, 8, and 9 from the Microsoft Visual Studio section.
(Considering step 7, describing console window, the separate console
window does not appear in Mac OS X, and all such information is
printed in the Xcode console.)

Chapter 1

[15]

Downloading the color graphics PDF
For downloading the colored graphics of this book visit:
http://www.packtpub.com/sites/default/files/
downloads/8048OS_ColoredImages.pdf

Installing on Linux with Code::Blocks
This section will guide you in installing openFrameworks for Code::Block on the
Ubuntu version of Linux. The current version is 12.11.

You can install openFrameworks not only on Ubuntu, but also
on Debian and Fedora versions of Linux. See installation guides
at http://www.openframeworks.cc/setup/linux-
codeblocks/.
Also, you can use Eclipse development environment instead of
Code::Blocks. See http://www.openframeworks.cc/setup/
linux-eclipse/.

The installation steps are as follows:

1. Install Code::Blocks. In the main menu in Ubuntu, click on the Dash
home icon, search for Ubuntu Software Center, and open it by selecting
the Ubuntu Software Center icon. Search for Code Blocks here. The
Code::Blocks program should be the first item listed. Click on the Install
button and follow the instructions.

2. Download the openFrameworks archive. Go to http://www.openframeworks.
cc/download/ and download openFrameworks for Code::Blocks (Linux), for
a 32- or 64-bit operating system. The downloaded ZIP file should be named
like of_v0.8.0_linux_release.tar or of_v0.8.0_linux64_release.tar.
Unzip the downloaded file; it will be a folder containing openFrameworks.
Move the folder to any location on your computer.

3. Now you should install openFrameworks by running some scripts from
Terminal. Please refer to http://www.openframeworks.cc/setup/linux-
codeblocks/ for detailed instructions.

4. Follow the steps 4, 5, 6, and 7 from the Code::Blocks (Windows) section for
installation steps on running an openFrameworks example.

openFrameworks Basics

[16]

openFrameworks' folders
Till now we have installed openFrameworks and checked its working. Let's
explore the contents of its folder. It consists of a number of folders, including
addons, apps, examples, libs, projectGenerator, and text files such as
license.md and readme.txt.

It is a good idea to read the license file license.md carefully
before using openFrameworks.

Let's consider some of the most important folders in detail.

The examples folder
This folder contains simple examples covering almost all the aspects of
openFrameworks, sorted by the following topics:

• 3d: This folder demonstrates the basics of 3D graphics and 3D math
(see Chapter 7, Drawing in 3D, for more information on the topic)

• addons: This folder contains examples of using various addons, which are
extensions of openFrameworks' core (see Appendix A, Working with Addons,
for more information on the topic)

• communication: This folder contains examples of communicating with
peripherals using serial port (most often via USB), for example, for
connecting with Arduino

• empty: This folder contains emptyExample, the simplest project for
openFrameworks, which we will use as a starting point for developing
most of the examples across the book

• events: This folder demonstrates built-in openFrameworks' event
system usage, like key pressing and timing, and also working with
custom event objects

• gl: This folder contains advanced examples on 2D and 3D graphics,
including FBO, VBO, and shaders (see Chapter 2, Drawing in 2D,
Chapter 7, Drawing in 3D, and Chapter 8, Using Shaders, for detailed
information on these topics)

• graphics: This folder demonstrates basic 2D graphics capabilities and
working with images (see Chapter 2, Drawing in 2D, and Chapter 4, Images
and Textures, for more information on these topics)

• gui: This folder exposes how to add graphical user interface, containing
buttons, sliders, and checkboxes to an openFrameworks project

Chapter 1

[17]

• math: This folder has examples on working with Perlin noise, simple
particle system, and also with vector mathematics (see Appendix B, Perlin
noise, and Chapter 3, Building a Simple Particle System, for more information
on these topics)

• sound: This folder contains examples that demonstrate how to play, generate
at low-level, and record sounds (see Chapter 6, Working with Sounds, for more
information on the topic)

• utils: This folder demonstrates working with small but important topics
such as converting values between different types (for example, converting
int to string), working with directories, and using threads

• video: This folder demonstrates how to play videos, process video frames,
and grab live video from camera (see Chapter 5, Working with Videos, for more
information on the topic)

Though most of the topics will be covered in this book, we highly recommend that
you run and see as many examples of the code as you can. It is very helpful for
dipping into the openFrameworks world.

The apps folder
This is a folder, in which all your projects should live. More specifically, you
should place the projects inside some subfolder of the apps folder. By now this
folder contains the myApps folder, and you can use it for your projects. Also you can
create new folders, like Performances2014, and place corresponding projects there.

Note, if you will try to compile a project placed outside a subfolder of the apps folder,
the compiler can give an error that it can not find the openFrameworks library.

The addons folder
This folder contains addons. These are the extensions of the basic openFrameworks
capabilities. When you need to add some extension to openFrameworks, you will
install it into this folder. We discuss the addons in detail in Appendix A, Working
with Addons.

openFrameworks Basics

[18]

File structure of a project
All openFrameworks projects have a similar structure of folders and files. Let's
consider this in detail by looking at the openFrameworks' pointCloudExample project.

Open the examples/3d/pointCloudExample folder. It consists of the following files
and folders:

• The bin folder contains an executable file of the project (maybe also a
number of libraries in the .dll files will be there—it depends on your
operating system). If you compile the project, as it is described in the
Installing openFrameworks and running your first example section, most probably
you will find there is an executable file named pointCloudExample_debug.
The _debug suffix means that the project was compiled in the Debug mode
of compilation. This mode lets you debug the project by using breakpoints
and other debugging tools.

Breakpoint is a debugging tool, which pauses execution of the
project in a specified line of code and lets you inspect the current
values of the project's variables.

Projects compiled in the Debug mode can work very slowly. So when your
project is working properly, always compile it in the Release mode of the
compilation. Many examples in the book should be compiled in the Release
mode for good performance. In this case, the executable file will be called
without the _debug suffix, such as pointCloudExample.

• Also, inside the bin folder you will find the data subfolder. This is a folder
where all your contents should be located: images, videos, sounds, XML,
and text files. openFrameworks projects use this folder as a default place for
loading and saving the data.
In the considered project, this folder contains one image file named linzer.
png.

This image consists of pixels, which hold red, green, blue, and
alpha color components (red, green, blue, alpha). Each image's
pixel (x, y) is transformed into a 3D point (x, y, z) with color (r, g,
b, a), so that the point's third coordinate z is calculated from the
alpha value. As a result we obtain the resultant 3D point cloud,
which is drawn on the screen. (See Chapter 4, Images and Textures,
for details on getting the pixels' colors from the images.)

Chapter 1

[19]

• The src folder contains C++ source codes for your project. Often, source codes
are represented in just three files: main.cpp, testApp.h, and testApp.cpp. We
will consider these files a bit later, in the Code structure of a project section. Note
that this folder can contain other .h and .cpp files of your project.

Also the project's folder contains a special project file for your development
environment. It has extension .sln (Visual Studio), .xcodeproj (Xcode), or
.workspace (Code::Blocks). This is the file which you should open in your
development environment in order to edit, compile, and run the project. (In the
considered example it has the name pointCloudExample.sln, pointCloudExample.
xcodeproj, or pointCloudExample.workspace.)

Additionally, the project's folder can contain some other files, for example, the
current project settings (the set of files depend on the development environment).

Code structure of a project
Source codes of an openFrameworks' project are placed in the project's src folder
and consist of at least three files: main.cpp, testApp.h, and testApp.cpp.

Remember the following convention: if some function or class name
begins with of, it means that it belongs to openFrameworks. Examples
are ofPoint, ofImage, and ofSetColor(). (If some name begins
with ofx, it means that it is part of some openFrameworks addon, for
example, ofxXmlSettings.)

main.cpp
In C++ language specification each project must have a .cpp file with the defined
main() function. This function is an entry point for an operating system to start the
application. In openFrameworks, the main() function is contained in the main.cpp
file. The most important line of the function is the following:

ofSetupOpenGL(&window, 1024, 768, OF_WINDOW);

openFrameworks Basics

[20]

This ofSetupOpenGL() function calling instructs openFrameworks that you need
to create a window for visual output with the width 1024 and height 768 pixels.
The last parameter OF_WINDOW means that you need to create a window, which the
user can move and resize on the desktop screen. If you specify the last parameters
as OF_FULLSCREEN, the project will run at full screen—such a mode is important for
many projects.

For example, if you need to show your project on the full screen with dimensions
1920 x 1024 pixels, you can do it by replacing the ofSetupOpenGL() call with the
following line:

ofSetupOpenGL(&window, 1920, 1024, OF_FULLSCREEN);

Normally you need not change the main.cpp file at all, because the settings of screen
size can be done in the testApp.cpp text, which we consider now.

Be careful! Inside the main() function most of the openFrameworks
objects such as ofImage do not work properly, because paths and
other variables are not set yet. So, indeed, in most cases you should
keep main.cpp untouched and do all you need in testApp.cpp.

testApp.h
This file begins with #pragma once. This is a compiler directive, which should be
present at the beginning of all the .h files. The next line is #include "ofMain.h". It
includes openFrameworks' core classes and functions. After this, the code contains
declaration of the testApp class, which is inherited from the openFrameworks'
ofBaseApp class:

#pragma once

#include "ofMain.h"

class testApp : public ofBaseApp{
public:
 //openFrameworks' standard functions declarations
 void setup();
 void update();

Chapter 1

[21]

 void draw();

 //...

 //Declarations of custom objects for the project
 ofEasyCam cam;
 ofMesh mesh;
 ofImage img;
};

The testApp class contains a number of functions, setup(), update(), draw(), and
some others. These are the functions required for your project to work. They are
defined in the ofBaseApp class and called by openFrameworks. (The linking of the
testApp class to the openFrameworks engine is done within the main() function.
Its last line creates an object of this class and links it to the window, controlled by
openFrameworks.) We will describe the meaning of the functions in the next section.

In the end of the class definition you will see declarations of the cam, mesh, and img
objects. These are custom objects defined just in this example. In your own projects,
you should add declarations of your objects here too.

For simplicity you can declare objects right in the testApp.cpp file,
but be careful, objects of some classes like ofEasyCam, ofThread,
and ofxTCPServer will not work properly and can cause the
application to crash if defined as static variables not belonging to the
testApp class. The reason is that openFrameworks performs some
actions before the testApp class' object is created, and such classes
rely on this. Note that in some examples of the book we sometimes use
such declarations for simple types (float, int, ofPoint, ofImage,
and others).

Let's sum up: when creating your own project you should keep declarations of the
setup(), update(), draw() functions, and others untouched, and also add your
objects' and functions' declarations, which are needed for your project.

testApp.cpp
The testApp.cpp file contains definitions of all functions, declared in testApp.h.
Let's explain the standard functions of the testApp class.

openFrameworks Basics

[22]

The most important functions are setup(), update(), and draw(). setup() is called
first, and then update() and draw() are called in an infinite cycle, until the user
presses the Esc key to close the project:

Besides pressing Esc, to finish the projects' execution, the user can
just close the projects' window.
If you need the project to terminate itself, call the OF_EXIT_APP(
val) function with some integer value val.

Let's consider these functions in detail.

setup()
The setup() function is called by openFrameworks just once, at the start of the
project. This is the best place for setting screen parameters such as refresh rate,
load images and videos, and start processes like camera grabbing.

The typical functions for controlling screen parameters are the following:

• ofSetFrameRate(rate): This parameter sets the frame rate of screen
refresh equal to the value rate of type int. Also, it controls the rate of calling
update() and draw(). The typical value is 60, which corresponds to the frame
rate of most TVs and projectors. The default value is zero, which means that
the frame rate is as large as possible (in some cases it is unwanted).

Chapter 1

[23]

• ofSetVerticalSync(v): This parameter enables or disables
synchronization of screen refresh with the video card's physical refresh, with
v of type bool. Enabling this mode improves the quality of a fast-moving
object's rendering, but slightly decreases the performance. By default the
synchronization is enabled.

• ofSetFullscreen(v): This parameter enables or disables full screen
mode, with v of type bool.

• ofSetWindowShape(w, h): This parameter sets the size of the output
window so that the drawing area will have size width w and height h pixels.

Note that you can call these functions from other functions of the testApp class too.

update()
This function is called by openFrameworks right after the setup() call. This is
the place where all computations should be performed, like changing positions of
objects, analyzing data from cameras, and network exchange.

Also, drawing into offscreen buffers (FBOs) can be
done here.

draw()
This function is called by openFrameworks after update(). All drawing functions
should be placed here. After draw(), openFrameworks again calls update(), so we
obtain a cycle of the update() and draw() methods.

The typical drawing functions are as follows:

• ofSetBackground(r, g, b), where r, g, and b are integer values from 0
to 255, specifying red, green, and blue components of screen background

• ofSetColor(r, g, b) sets the drawing color
• ofLine(x1, y1, x2, y2) draws a line segment connecting points

(x1, y1) and (x2, y2)

openFrameworks Basics

[24]

Other functions
The testApp.cpp file contains definitions of other functions, declared in testApp.h.
These are event-driven functions; openFrameworks calls them when some event
occurs, like mouse moving or keyboard pressing. Some of the most important
functions are the following:

• The keyPressed(key) and keyReleased(key) functions are called by
openFrameworks when some key is pressed or released. Here key is an int
value, which can be compared with char values like 'a', and with constants
denoting special keys like OF_KEY_RETURN for the Return (Enter) key, OF_
KEY_LEFT for the left cursor key, and so on. See the full list of special keys
constants in the libs/openFrameworks/utils/ofConstants.h file.

• The mouseMoved(x, y) function is called when the mouse is moved over
the project's window without pressing any keys. Here x and y are the mouse
pointer coordinates in pixels, with the center of the coordinates in the top-left
corner of the window.

• The mouseReleased(x, y, button), mouseDragged(x, y, button),
and mousePressed(x, y, button) functions are called when a mouse
button is pressed, when the mouse is moving, and when the mouse button is
released, respectively. Here button equals to 0, 1, and 2 for left, center, and
right mouse buttons respectively.

• The windowResized(w, h) function is called when the size of the window
is changed by the user or by calling the ofSetWindowShape() function. Here
w and h are equal to the current width and height of the window.

Now we will discuss the ways for creating a new openFrameworks project.

Creating a new project
For developing your projects you have two possibilities: start it from an existing
example or create it using the Project Generator wizard. Let's discuss both in detail.

Creating a project from an existing example
The easiest way to start your own project is to just copy some existing examples (or
your own project) into the apps/myApps folder, or any other subfolder of the apps
folder. Then rename the folder as you want (for example, to myInteractiveWall),
and open the project using your developing environment. Now you can change the
code, and run the project.

Chapter 1

[25]

This way, almost all the examples in the book are made from the emptyExample
project, located in the examples/empty folder.

Such an approach is indeed very easy. Also, it is especially useful for working with
some complicated addons such as ofxOpenNI (see Chapter 10, Using Depth Cameras,
for more information on this addon). Namely, you can have difficulties with linking
such addons by yourself or with projectGenerator. In this case, just start your project
from the existing working addon's example.

Creating a project using Project Generator
You can create a new project using the Project Generator wizard, located in the
projectGenerator folder. It lets you specify the project's name, its folder, and the
list of addons needed in the project.

Such a way is simple too, and it is especially useful when you start a new project,
which needs to use many addons. Manual linking of addons can take much time,
and Project Generator does it automatically for you. For further details see the Using
Project Generator section in Appendix A, Working with Addons.

In our opinion, using Project Generator just for creating projects with proper
names is not so important, because you can rename the project by yourself using
the development environment. So, we use this wizard just for linking addons to
new projects.

Now we are ready to create our first project with openFrameworks.

Creating your first project – the
Pendulum example
Let's create an openFrameworks project, which draws a moving pendulum in 2D,
consisting of a ball dangled on a rubber segment. The example is based on the
emptyExample project in openFrameworks. Perform the following steps to create
the project:

1. Copy the emptyExample project's folder into the folder intended for holding
your applications (like apps/myApps), and rename it to Pendulum.

2. Go inside the Pendulum folder and open this project in your development
environment (emptyExample.sln for Visual Studio, emptyExample.
xcodeproj for Xcode, or emptyExample.workspace for Code::Blocks).

openFrameworks Basics

[26]

3. Open the file testApp.h in the development environment, and in the
testApp class declaration add the declarations for the pendulum's
center of suspension and the ball's position and velocity:
ofPoint pos0; //Center of suspension
ofPoint pos; //Ball's position
ofPoint velocity; //Ball's velocity

Here ofPoint is the openFrameworks' class for holding point coordinates, it
has x and y members (we will study it in Chapter 2, Drawing in 2D).

4. Open the file testApp.cpp, and fill the body of the testApp::setup()
function definition:
void testApp::setup(){
 //Set screen frame rate
 ofSetFrameRate(60);

 //Set initial values
 pos0 = ofPoint(512, 300);
 pos = ofPoint(600, 200);
 velocity = ofPoint(100, 0);
}

In this function we set the frame rate to 60 frames per second, and we also set
initial values for all three points.

5. Now fill the body of the testApp::update() function definition:
void testApp::update(){
 //Constants
 float dt = 1.0 / 60.0; //Time step
 float mass = 0.1; //Mass of a ball
 float rubberLen = 200.0; //Segment's length
 float k = 0.5; //Segment's stiffness
 ofPoint g(0.0, 9.8); //Gravity force

 //Compute Hooke's force
 ofPoint delta = pos - pos0;
 float len = delta.length(); //Vector's length
 float hookeValue = k * (len - rubberLen);
 delta.normalize(); //Normalize vector's length
 ofPoint hookeForce = delta * (-hookeValue);

 //Update velocity and pos

Chapter 1

[27]

 ofPoint force = hookeForce + g; //Resulted force
 ofPoint a = force / mass; //Second Newton's law
 velocity += a * dt; //Euler method
 pos += velocity * dt; //Euler method
}

This function updates velocity and pos, using Newton's second law and the
Euler method. For such a purpose, we compute the force acting on a ball as a
sum of Hooke's force between the ball, suspension point, and gravity force.

The details on the Euler method can be seen in the Defining the particle
functions section in Chapter 3, Building a Simple Particle System. The
information on the Newton's second law, Hooke's force, and gravity
force can be seen at the following links:

• http://en.wikipedia.org/wiki/Newton's_laws_of_
motion

• http://en.wikipedia.org/wiki/Hooke's_law

• http://en.wikipedia.org/wiki/Gravitational_field

6. Finally, fill the body of the testApp::draw() function definition:
void testApp::draw(){
 //Set white background
 ofBackground(255, 255, 255);

 //Draw rubber as a blue line
 ofSetColor(0, 0, 255); //Set blue color
 ofLine(pos0.x, pos0.y, pos.x, pos.y); //Draw line

 //Draw ball as a red circle
 ofSetColor(255, 0, 0); //Set red color
 ofFill(); //Enable filling
 ofCircle(pos.x, pos.y, 20); //Draw circle
}

Here we set a white background, draw a rubber as a blue line from pos0
to pos, and also draw a ball as a red circle. Note that we use the ofFill()
function, which enables openFrameworks' mode to draw filled primitives
(circles, rectangles, and triangles). See more details on these drawing
functions in Chapter 2, Drawing in 2D.

openFrameworks Basics

[28]

7. Run the project. You will see the animation of a moving ball:

Play with numerical values in the setup() and update() functions and see how it
affects the dynamics of the pendulum.

Running the book's examples
We just saw the first of the book's examples. You will see there are many other
examples in the book. Some examples require additional content files, and also the
code of some of the examples is given in shortened form. So for efficient work with
the book, please download the book's example source codes and its content files from
the Support tab of the book's page available at the following link:

http://www.packtpub.com/mastering-openframeworks-creative-coding-
demystified/book

Note all the example projects are presented just as source files (.h and .cpp). The
content files such as images, videos, and sounds are located in separate folders. For
running an example, you need to create a new openFrameworks project, copy the
.h and .cpp source files of the downloaded example to the src folder of this project
(with replacing files), and copy the needed content files into the bin/data folder of
the project.

Chapter 1

[29]

We will always specify which project should be taken as a base for the example
project, and which content files are required for running the example. Also, for
convenience, we will place the name of the folder with the example's codes in an
information box, like this:

This is example 01-Basics/01-Pendulum.

Basic utility functions
The last section of the chapter mentions some utility functions, which will be used in
examples across the book, or just can be useful in your projects.

• ofMap(v, v0, v1, out0, out1): This function performs linear
interpolation of a float value v from the segment [v0, v1] to the segment
[out0, out1]. Note, it does not control boundaries of v, and just uses the
formula (v-v0)/(v1-v0)*(out1-out0) + out0. For controlling boundaries, call this
function with the last optional parameter set to true: ofMap(v, v0, v1,
out0, out1, true). Then the result will be clamped to [out0, out1].

• ofClamp(v, v0, v1): This function clamps the float value v to the
segment [v0, v1] that is returns min(max(v, v0), v1).

• ofRandom(a, b): This function generates a pseudo-random number in the
segment [a, b]. (Actually, it returns a value always less than that of b).

• ofNoise (x), ofNoise(x, y), ofNoise(x, y, z), and ofNoise(
x, y, z, w):These functions return Perlin noise value, see the details in
Appendix B, Perlin Noise.

• ofToString(v): This function converts the int or float value v into
string-returning value

• ofToInt(s) and ofToFloat(s): These functions convert the string s
into int or float returning values respectively.

• ofGetWidth() and ofGetHeight(): These functions return the current width
and height of the project's screen, in pixels.

• ofGetElapsedTimef(): This function returns the value of seconds lapsed from
the project's start. This is a float value, measured with millisecond accuracy.
For example, returned value 123.4 means 123 seconds and 400 milliseconds.

• ofShowCursor() and ofHideCursor(): These functions show and hide the
mouse cursor.

openFrameworks Basics

[30]

For printing information into a console window, you can use the standard cout
stream. For example, for printing time from the project's start, use the following code:

cout << "Time: " << ofGetElapsedTimef() << endl;

Here, endl is a standard constant, which means starting a new line in the console.

Summary
In this chapter we learned what is openFrameworks and when it should be used,
how to install it, and run its examples. Also, we explored the project's folder and
code structure, and finally made the first project with pendulum simulation.

In the next chapter we learn how to work with 2D graphics using openFrameworks.

Drawing in 2D
Drawing is one of the main capabilities of openFrameworks. Here, we consider the
basics of 2D graphics, including drawing geometric primitives, working with colors,
and drawing in an offscreen buffer. In this chapter we will cover:

• Geometric primitives
• Using ofPoint
• Coordinate system transformations
• Colors
• Using FBO for offscreen drawings
• Playing with numerical instability
• Screen grabbing

Drawing basics
The screens of modern computers consist of a number of small squares, called pixels
(picture elements). Each pixel can light in one color. You create pictures on the
screen by changing the colors of the pixels.

Graphics based on pixels is called raster graphics. Another kind of
graphics is vector graphics, which is based on primitives such as
lines and circles. Today, most computer screens are arrays of pixels
and represent raster graphics. But images based on vector graphics
(vector images) are still used in computer graphics (for details, see the
Images basics section in Chapter 4, Images and Textures). Vector images
are drawn on raster screens using the rasterization procedure.

Drawing in 2D

[32]

The openFrameworks project can draw on the whole screen (when it is in fullscreen
mode) or only in a window (when fullscreen mode is disabled). See how to set
screen modes in the main.cpp and setup() sections in Chapter 1, openFrameworks Basics.
For simplicity, we will call the area where openFrameworks can draw, the screen.
The current width and height of the screen in pixels may be obtained using the
ofGetWidth() and ofGetHeight() functions.

For pointing the pixels, openFrameworks uses the screen's coordinate system.
This coordinate system has its origin on the top-left corner of the screen. The
measurement unit is a pixel. So, each pixel on the screen with width w and height
h pixels can be pointed by its coordinates (x, y), where x and y are integer values
lying in the range 0 to w-1 and from 0 to h-1 respectively.

In this chapter, we will deal with two-dimensional (2D) graphics, which is a number
of methods and algorithms for drawing objects on the screen by specifying the two
coordinates (x, y) in pixels.

The other kind of graphics is three-dimensional (3D) graphics, which
represents objects in 3D space using three coordinates (x, y, z) and
performs rendering on the screen using some kind of projection of
space (3D) to the screen (2D). For details on 3D graphics, go through
Chapter 7, Drawing in 3D.

The background color of the screen
The drawing on the screen in openFrameworks should be performed in the
testApp::draw() function (see the testApp.cpp section in Chapter 1, openFrameworks
Basics). Before this function is called by openFrameworks, the entire screen is filled
with a fixed color, which is set by the function ofSetBackground(r, g, b). Here
r, g, and b are integer values corresponding to red, green, and blue components of
the background color in the range 0 to 255. Note that each of the ofSetBackground()
function call fills the screen with the specified color immediately.

You can make a gradient background using the
ofBackgroundGradient() function. See its
description in the The triangles cloud example section
in Chapter 7, Drawing in 3D.

You can set the background color just once in the testApp::setup() function, but
we often call ofSetBackground() in the beginning of the testApp::draw() function
to not mix up the setup stage and the drawing stage.

Chapter 2

[33]

Pulsating background example
You can think of ofSetBackground() as an opportunity to make the simplest
drawings, as if the screen consists of one big pixel. Consider an example where the
background color slowly changes from black to white and back using a sine wave.

This is example 02-2D/01-PulsatingBackground.

The project is based on the openFrameworks emptyExample example. Copy the
folder with the example and rename it. Then fill the body of the testApp::draw()
function with the following code:

float time = ofGetElapsedTimef(); //Get time in seconds

//Get periodic value in [-1,1], with wavelength equal to 1 second
float value = sin(time * M_TWO_PI);

//Map value from [-1,1] to [0,255]
float v = ofMap(value, -1, 1, 0, 255);

ofBackground(v, v, v); //Set background color

This code gets the time lapsed from the start of the project using the
ofGetElapsedTimef() function, and uses this value for computing value = sin(
time * M_TWO_PI). Here, M_TWO_PI is an openFrameworks constant equal to
2π; that is, approximately 6.283185. So, time * M_TWO_PI increases by 2π per
second. The value 2π is equal to the period of the sine wave function, sin(). So, the
argument of sin(...) will go through its wavelength in one second, hence value
= sin(...) will run from -1 to 1 and back. Finally, we map the value to v, which
changes in range from 0 to 255 using the ofMap() function, and set the background
to a color with red, green, and blue components equal to v.

See the descriptions of the ofGetElapsedTimef() and
ofMap() functions in the Basic utility functions section in
Chapter 1, openFrameworks Basics.

Run the project; you will see how the screen color pulsates by smoothly changing its
color from black to white and back.

Drawing in 2D

[34]

Replace the last line, which sets the background color to
ofBackground(v, 0, 0);, and the color will pulsate from
black to red.
Replace the argument of the sin(...) function to the formula
time * M_TWO_PI * 2 and the speed of the pulsating increases
by two times.

We will return to background in the Drawing with an uncleared background section.
Now we will consider how to draw geometric primitives.

Geometric primitives
In this chapter we will deal with 2D graphics. 2D graphics can be created in the
following ways:

• Drawing geometric primitives such as lines, circles, and other curves and
shapes like triangles and rectangles. This is the most natural way of creating
graphics by programming. Generative art and creative coding projects are often
based on this graphics method. We will consider this in the rest of the chapter.

• Drawing images lets you add more realism to the graphics, and this is
considered in Chapter 4, Images and Textures.

• Setting the contents of the screen directly, pixel-by-pixel, is the most
powerful way of generating graphics. But it is harder to use for simple things
like drawing curves. So, such method is normally used together with both
of the previous methods. A somewhat fast technique for drawing a screen
pixel-by-pixel consists of filling an array with pixels colors, loading it in
an image, and drawing the image on the screen (see its description in the
Creating images section in Chapter 4, Images and Textures). The fastest, but a
little bit harder technique, is using fragment shaders (see its explanation in
the A simple fragment shader example section in Chapter 8, Using Shaders).

openFrameworks has the following functions for drawing primitives:

• ofLine(x1, y1, x2, y2): This function draws a line segment connecting
points (x1, y1) and (x2, y2)

• ofRect(x, y, w, h): This function draws a rectangle with the top-left
corner (x, y), width w, and height h

• ofTriangle(x1, y1, x2, y2, x3, y3): This function draws a triangle
with vertices (x1, y1), (x2, y2), and (x3, y3)

• ofCircle(x, y, r): This function draws a circle with center (x, y) and
radius r

Chapter 2

[35]

openFrameworks has no special function for changing the color of a
separate pixel. To do so, you can draw the pixel (x, y) as a rectangle with
width and height equal to 1 pixel; that is, ofRect(x, y, 1, 1).
This is a very slow method, but we sometimes use it for educational and
debugging purposes.

All the coordinates in these functions are float type. Although the coordinates
(x, y) of a particular pixel on the screen are integer values, openFrameworks uses
float numbers for drawing geometric primitives. This is because a video card can
draw objects with the float coordinates using modeling, as if the line goes between
pixels. So the resultant picture of drawing with float coordinates is smoother than
with integer coordinates.

Using these functions, it is possible to create simple drawings.

The simplest example of a flower
Let's consider the example that draws a circle, line, and two triangles, which forms
the simplest kind of flower.

This is example 02-2D/02-FlowerSimplest.

This example project is based on the openFrameworks emptyExample project. Fill the
body of the testApp::draw() function with the following code:

ofBackground(255, 255, 255); //Set white background
ofSetColor(0, 0, 0); //Set black color

ofCircle(300, 100, 40); //Blossom
ofLine(300, 100, 300, 400); //Stem
ofTriangle(300, 270, 300, 300, 200, 220); //Left leaf
ofTriangle(300, 270, 300, 300, 400, 220); //Right leaf

On running this code, you will see the following picture of the "flower":

Drawing in 2D

[36]

Controlling the drawing of primitives
There are a number of functions for controlling the parameters for drawing primitives.

• ofSetColor(r, g, b): This function sets the color of drawing primitives,
where r, g, and b are integer values corresponding to red, green, and blue
components of the color in the range 0 to 255. After calling ofSetColor(),
all the primitives will be drawn using this color until another ofSetColor()
calling. We will discuss colors in more detail in the Colors section.

• ofFill() and ofNoFill(): These functions enable and disable filling shapes
like circles, rectangles, and triangles. After calling ofFill() or ofNoFill(),
all the primitives will be drawn filled or unfilled until the next function is
called. By default, the shapes are rendered filled with color. Add the line
ofNoFill(); before ofCircle(...); in the previous example and you will
see all the shapes unfilled, as follows:

• ofSetLineWidth(lineWidth): This function sets the width of the rendered
lines to the lineWidth value, which has type float. The default value is 1.0,
and calling this function with larger values will result in thick lines. It only
affects drawing unfilled shapes. The line thickness is changed up to some
limit depending on the video card. Normally, this limit is not less than 8.0.

Add the line ofSetLineWidth(7); before the line drawing
in the previous example, and you will see the flower with a thick
vertical line, whereas all the filled shapes will remain unchanged.
Note that we use the value 7; this is an odd number, so it gives
symmetrical line thickening.

Chapter 2

[37]

Note that this method for obtaining thick lines is simple but not perfect,
because adjacent lines are drawn quite crudely. For obtaining smooth thick
lines, you should draw these as filled shapes.

• ofSetCircleResolution(res): This function sets the circle resolution;
that is, the number of line segments used for drawing circles to res. The
default value is 20, but with such settings only small circles look good.
For bigger circles, it is recommended to increase the circle resolution; for
example, to 40 or 60. Add the line ofSetCircleResolution(40); before
ofCircle(...); in the previous example and you will see a smoother circle.
Note that a large res value can decrease the performance of the project, so if
you need to draw many small circles, consider using smaller res values.

• ofEnableSmoothing() and ofDisableSmoothing(): These functions enable
and disable line smoothing. Such settings can be controlled by your video
card. In our example, calling these functions will not have any effect.

Performance considerations
The functions discussed work well for drawings containing not more
than a 1000 primitives. When you draw more primitives, the project's
performance can decrease (it depends on your video card). The reason
is that each command such as ofSetColor() or ofLine() is sent to
drawing separately, which takes time. So, for drawing 10,000, 100,000,
or even 1 million primitives, you should use advanced methods, which
draw many primitives at once. In openFrameworks, you can use the
ofMesh and ofVboMesh classes for this (for details, see the Using
ofMesh section in Chapter 7, Drawing in 3D).

Using ofPoint
Maybe you noted a problem when considering the preceding flower example:
drawing primitives by specifying the coordinates of all the vertices is a little
cumbersome. There are too many numbers in the code, so it is hard to understand
the relation between primitives. To solve this problem, we will learn about using the
ofPoint class and then apply it for drawing primitives using control points.

ofPoint is a class that represents the coordinates of a 2D point. It has two main
fields: x and y, which are float type.

Actually, ofPoint has the third field z, so ofPoint can be used for
representing 3D points too (we use this capability in Chapter 7, Drawing
in 3D). If you do not specify z, it sets to zero by default, so in this case
you can think of ofPoint as a 2D point indeed.

Drawing in 2D

[38]

Operations with points
To represent some point, just declare an object of the ofPoint class.

ofPoint p;

To initialize the point, set its coordinates.

p.x = 100.0;
p.y = 200.0;

Or, alternatively, use the constructor.

p = ofPoint(100.0, 200.0);

You can operate with points just as you do with numbers. If you have a point q,
the following operations are valid:

• p + q or p - q provides points with coordinates (p.x + q.x, p.y + q.y) or
(p.x - q.x, p.y - q.y)

• p * k or p / k, where k is the float value, provides the points (p.x * k,
p.y * k) or (p.x / k, p.y / k)

• p += q or p -= q adds or subtracts q from p

There are a number of useful functions for simplifying 2D vector mathematics,
as follows:

• p.length(): This function returns the length of the vector p, which is equal
to sqrt(p.x * p.x + p.y * p.y).

• p.normalize(): This function normalizes the point so it has the unit length
p = p / p.length(). Also, this function handles the case correctly when
p.length() is equal to zero.

See the full list of functions for ofPoint in the libs/
openFrameworks/math/ofVec3f.h file. Actually,
ofPoint is just another name for the ofVec3f class,
representing 3D vectors and corresponding functions.

Chapter 2

[39]

All functions' drawing primitives have overloaded versions working with ofPoint:

• ofLine(p1, p2) draws a line segment connecting the points p1 and p2
• ofRect(p, w, h) draws a rectangle with top-left corner p, width w, and

height h
• ofTriangle(p1, p2, p3) draws a triangle with the vertices p1, p2,

and p3
• ofCircle(p, r) draws a circle with center p and radius r

Using control points example
We are ready to solve the problem stated in the beginning of the Using ofPoint
section. To avoid using many numbers in drawing code, we can declare a number
of points and use them as vertices for primitive drawing. In computer graphics,
such points are called control points.

Let's specify the following control points for the flower in our simplest flower example:

Now we implement this in the code.

This is example 02-2D/03-FlowerControlPoints.

Add the following declaration of control points in the testApp class declaration in
the testApp.h file:

ofPoint stem0, stem1, stem2, stem3, leftLeaf, rightLeaf;

Drawing in 2D

[40]

Then set values for points in the testApp::update() function as follows:

stem0 = ofPoint(300, 100);
stem1 = ofPoint(300, 270);
stem2 = ofPoint(300, 300);
stem3 = ofPoint(300, 400);
leftLeaf = ofPoint(200, 220);
rightLeaf = ofPoint(400, 220);

Finally, use these control points for drawing the flower in the testApp::draw()
function:

ofBackground(255, 255, 255); //Set white background
ofSetColor(0, 0, 0); //Set black color

ofCircle(stem0, 40); //Blossom
ofLine(stem0, stem3); //Stem
ofTriangle(stem1, stem2, leftLeaf); //Left leaf
ofTriangle(stem1, stem2, rightLeaf); //Right leaf

You will observe that when drawing with control points the code is much easier
to understand.

Furthermore, there is one more advantage of using control points: we can
easily change control points' positions and hence obtain animated drawings.
See the full example code in 02-2D/03-FlowerControlPoints. In addition to
the already explained code, it contains a code for shifting the leftLeaf and
rightLeaf points depending on time. So, when you run the code, you will
see the flower with moving leaves.

Coordinate system transformations
Sometimes we need to translate, rotate, and resize drawings. For example, arcade
games are based on the characters moving across the screen.

When we perform drawing using control points, the straightforward solution for
translating, rotating, and resizing graphics is in applying desired transformations
to control points using corresponding mathematical formulas. Such idea works,
but sometimes leads to complicated formulas in the code (especially when we
need to rotate graphics). The more elegant solution is in using coordinate system
transformations. This is a method of temporarily changing the coordinate system
during drawing, which lets you translate, rotate, and resize drawings without
changing the drawing algorithm.

Chapter 2

[41]

The current coordinate system is represented in openFrameworks with
a matrix. All coordinate system transformations are made by changing
this matrix in some way. When openFrameworks draws something
using the changed coordinate system, it performs exactly the same
number of computations as with the original matrix. It means that you
can apply as many coordinate system transformations as you want
without any decrease in the performance of the drawing.

Coordinate system transformations are managed in openFrameworks with the
following functions:

• ofPushMatrix(): This function pushes the current coordinate system in
a matrix stack. This stack is a special container that holds the coordinate
system matrices. It gives you the ability to restore coordinate system
transformations when you do not need them.

• ofPopMatrix(): This function pops the last added coordinate system from
a matrix stack and uses it as the current coordinate system. You should take
care to see that the number of ofPopMatrix() calls don't exceed the number
of ofPushMatrix() calls.

Though the coordinate system is restored before
testApp::draw() is called, we recommend that the
number of ofPushMatrix() and ofPopMatrix() callings
in your project should be exactly the same. It will simplify
the project's debugging and further development.

• ofTranslate(x, y) or ofTranslate(p): This function moves the
current coordinate system at the vector (x, y) or, equivalently, at the vector p.
If x and y are equal to zero, the coordinate system remains unchanged.

• ofScale(scaleX, scaleY): This function scales the current coordinate
system at scaleX in the x axis and at scaleY in the y axis. If both parameters
are equal to 1.0, the coordinate system remains unchanged. The value -1.0
means inverting the coordinate axis in the opposite direction.

• ofRotate(angle): This function rotates the current coordinate system
around its origin at angle degrees clockwise. If the angle value is equal to 0,
or k * 360 with k as an integer, the coordinate system remains unchanged.

All transformations can be applied in any sequence; for example, translating, scaling,
rotating, translating again, and so on.

Drawing in 2D

[42]

The typical usage of these functions is the following:

1. Store the current transformation matrix using ofPushMatrix().
2. Change the coordinate system by calling any of these functions:

ofTranslate(), ofScale(), or ofRotate().
3. Draw something.
4. Restore the original transformation matrix using ofPopMatrix().

Step 3 can include steps 1 to 4 again.

For example, for moving the origin of the coordinate system to the center of the
screen, use the following code in testApp::draw():

ofPushMatrix();
ofTranslate(ofGetWidth() / 2, ofGetHeight() / 2);
//Draw something
ofPopMatrix();

If you replace the //Draw something comment to ofCircle(0, 0, 100);, you
will see the circle in the center of the screen.

This transformation significantly simplifies coding the
drawings that should be located at the center of the screen.

Now let's use coordinate system transformation for adding triangular petals to
the flower.

For further exploring coordinate system transformations, see the
example in the Rotating images section in Chapter 4, Images and Textures.

Chapter 2

[43]

Flower with petals example
In this example, we draw petals to the flower from the 02-2D/03-
FlowerControlPoints example, described in the Using control points example section.

This is example 02-2D/04-FlowerWithPetals.

We want to draw unfilled shapes here, so add the following lines at the beginning of
testApp::draw():

ofNoFill(); //Draw shapes unfilled

Now add the following code to the end of testApp::draw() for drawing the petals:

ofPushMatrix(); //Store the coordinate system

//Translate the coordinate system center to stem0
ofTranslate(stem0);

//Rotate the coordinate system depending on the time
float angle = ofGetElapsedTimef() * 30;
ofRotate(angle);

int petals = 15; //Number of petals
for (int i=0; i<petals; i++) {
 //Rotate the coordinate system
 ofRotate(360.0 / petals);

 //Draw petal as a triangle
 ofPoint p1(0, 20);
 ofPoint p2(80, 0);
 ofTriangle(p1, -p1, p2);
}

//Restore the coordinate system
ofPopMatrix();

Drawing in 2D

[44]

This code moves the coordinate system origin to the point stem0 (the blossom's
center) and rotates it depending on the current time. Then it rotates the coordinate
system on a fixed angle and draws a triangle petals times. As a result, we obtain a
number of triangles that slowly rotate around the point stem0.

Colors
Up until now we have worked with colors using the functions ofSetColor(r, g,
b) and ofBackground(r, g, b). By calling these functions, we specify the color
of the current drawing and background as r, g, and b values, corresponding to red,
green, and blue components, where r, g and b are integer values lying in the range 0
to 255.

When you need to specify gray colors, you can use overloaded versions
of these functions with just one argument: ofSetColor(gray) and
ofBackground(gray), where gray is in the range 0 to 255.

These functions are simple, but not enough. Sometimes, you need to pass the color
as a single parameter in a function, and also do color modifications like changing the
brightness. To solve this problem, openFrameworks has the class ofColor. It lets us
operate with colors as we do with single entities and modify these.

Chapter 2

[45]

ofColor is a class representing a color. It has four float fields: r, g, b, and a. Here r, g,
and b are red, green, and blue components of a color, and a is the alpha component,
which means the opacity of a color. The alpha component is related to transparency,
which is discussed in detail in the Transparency section in Chapter 4, Images and Textures.

In this chapter we will not consider the alpha component. By default, its value
is equal to 255, which means truly opaque color, so all colors considered in this
chapter are opaque.

The ofSetColor(), ofBackground(), and ofColor() functions
include the alpha component as an optional last argument, so you
can specify it when needed.

Operations with colors
To represent some color, just declare an object of the ofColor class.

ofColor color;

To initialize the color, set its components.

color.r = 0.0;
color.g = 128.0;
color.b = 255.0;

Or, equivalently, use the constructor.

color = ofColor(0.0, 128.0, 255.0);

You can use color as an argument in the functions ofSetColor() and
ofBackground(). For example, ofSetColor(color) and ofBackground(color).

openFrameworks has a number of predefined colors, including white, gray,
black, red, green, blue, cyan, magenta, and yellow. See the full list of colors
in the libs/openFrameworks/types/ofColors.h file. To use the predefined
colors, add the ofColor:: prefix before these names. For example, ofSetColor(
ofColor::yellow) sets the current drawing color to yellow.

Drawing in 2D

[46]

You can modify the color using the following functions:

• setHue(hue), setSaturation(saturation), and setBrightness(
brightness): These functions change the hue, saturation, and brightness of
the color to specified values. All the arguments are float values in the range 0
to 255.

• setHsb(hue, saturation, brightness): This function creates a color
by specifying its hue, saturation, and brightness values, where arguments are
float values in the range 0 to 255.

• getHue() and getSaturation(): These functions return the hue and
saturation values of the color.

• getBrightness(): This function returns the brightest color component.
• getLightness(): This function returns the average of the color components.
• invert(): This function inverts color components; that is, the r, g, and b

fields of the color become 255-r, 255-g, and 255-b respectively.

Let's consider an example that demonstrates color modifications.

Color modifications example
In this example, we will modify the red color by changing its brightness, saturation,
and hue through the whole range and draw three resultant stripes.

This is example 02-2D/05-Colors.

This example project is based on the openFrameworks emptyExample project. Fill the
body of the testApp::draw() function with the following code:

ofBackground(255, 255, 255); //Set white background

//Changing brightness
for (int i=0; i<256; i++) {
 ofColor color = ofColor::red; //Get red color
 color.setBrightness(i); //Modify brightness
 ofSetColor(color);
 ofLine(i, 0, i, 50);
}

//Changing saturation
for (int i=0; i<256; i++) {
 ofColor color = ofColor::red; //Get red color

Chapter 2

[47]

 color.setSaturation(i); //Modify saturation
 ofSetColor(color);
 ofLine(i, 80, i, 130);
}

//Changing hue
for (int i=0; i<256; i++) {
 ofColor color = ofColor::red; //Get red color
 color.setHue(i); //Modify hue
 ofSetColor(color);
 ofLine(i, 160, i, 210);
}

Run the project and you will see three stripes consisting of the red color with
changed brightness, saturation, and hue.

As you can see, changing brightness, saturation, and hue is similar to the
color-corrections methods used in photo editors like Adobe Photoshop and Gimp.
From a designer's point of view, this is a more powerful method for controlling
colors as compared to directly specifying the red, green, and blue color components.

See an example of using the described color modification method
end of the Defining the particle functions section in Chapter 3, Building
a Simple Particle System.

Now we will consider how to perform drawings with uncleared background, which
can be useful in many creative coding projects related to 2D graphics.

Drawing in 2D

[48]

Drawing with an uncleared background
By default, the screen is cleared each time before testApp:draw() is called, so you
need to draw all the contents of the screen inside testApp::draw() again and again.
It is appropriate in most cases, but sometimes we want the screen to accumulate
our drawings. In openFrameworks, you can do this by disabling screen clearing
using the ofSetBackgroundAuto(false) function. All successive drawings will
accumulate on the screen. (In this case you should call ofBackground() rarely, only
for clearing the current screen).

This method is very simple to use, but is not flexible enough for serious projects.
Also, currently it has some issues:

• In Mac OS X, the screen can jitter.
• In Windows, screen grabbing does not work (more details on screen grabbing

can be seen in the Screen grabbing section later in this chapter)

See an example of using this method in the The bouncing
ball example section in Chapter 6, Working with Sounds.

So, when you need to accumulate drawings, we recommend you to use the FBO
buffer, which we will explain now.

Using FBO for offscreen drawings
FBO in computer graphics stands for frame buffer object. This is an offscreen
raster buffer where openFrameworks can draw just like on the screen. You can
draw something in this buffer, and then draw the buffer contents on the screen. The
picture in the buffer is not cleared with each testApp::draw() calling, so you can
use FBO for accumulated drawings.

In openFrameworks, FBO is represented by the class ofFBO.

The typical scheme of its usage is the following:

1. Declare an ofFbo object, fbo, in the testApp class declaration.
ofFbo fbo;

2. Initialize fbo with some size in the testApp::setup() function.
int w = ofGetWidth();
int h = ofGetHeight();
fbo.allocate(w, h);

Chapter 2

[49]

3. Draw something in fbo. You can do it not only in testApp::draw() but also
in testApp::setup() and testApp::update(). To begin drawing, call fbo.
begin(). After this, all drawing commands, such as ofBackground() and
ofLine(), will draw to fbo. To finish drawing, call fbo.end(). For example,
to fill fbo with white color, use the following code:
fbo.begin();
ofBackground(255, 255, 255);
fbo.end();

4. Draw fbo on the screen using the fbo.draw(x, y) or fbo.draw(x, y,
w, h) functions. Here, x and y are the top-left corner, and w and h are the
optional width and height of the rendered fbo image on the screen. The
drawing should be done in the testApp::draw() function. The example of
the corresponding code is the following:
ofSetColor(255, 255, 255);
fbo.draw(0, 0);

The ofFbo class has drawing behavior similar to the image class
ofImage. So, the ofSetColor(255, 255, 255); line is
needed here to draw fbo without color modulation (see details in
the Color modulation section in Chapter 4, Images and Textures).

You can use many FBO objects and even draw one inside another. For example, if
you have ofFbo fbo2, you can draw fbo inside fbo2 as follows:

fbo2.begin();
ofSetColor(255, 255, 255);
fbo.draw(0, 0);
fbo2.end();

Be careful: if you call fbo.begin(), you should always call
fbo.end(); do it before drawing FBO's contents anywhere.

The following tips will be helpful for advanced ofFbo usage:

• fbo has texture of the type ofTexture, which holds its current picture. The
texture can be accessed using fbo.getTextureReference(). See the Using
ofTexture for memory optimization section in Chapter 4, Images and Textures, for
details on operations with textures.

Drawing in 2D

[50]

• The settings of your video card, such as like antialiasing smoothing, does not
affect FBO, so it may happen that your smooth drawing on screen becomes
aliased when you perform this drawing using fbo. One possible solution
for smooth graphics is using fbo that is double the size of the screen and
shrinking fbo to screen size during drawing.

• When you perform semi-transparent drawing to fbo (with alpha-blending
enabled), most probably you should disable alpha-blending when drawing
fbo itself on the screen. In the opposite case, transparent pixels of fbo will
be blended in the screen one more time, so the resultant picture will be
overblended. See the Transparency section in Chapter 4, Images and Textures,
for details on blending.

• By default, fbo holds color components of its pixels as unsigned char values.
When more accuracy is needed, you can use float-valued fbo by allocating it
with the optional last parameter GL_RGB32F_ARB.
fbo.allocate(w, h, GL_RGB32F_ARB);

See an example of using this method in the Implementing a particle in the
project section in Chapter 3, Building a Simple Particle System.

Let's consider an example of using the ofFbo object for accumulated drawing.

Spirals example
Consider a drawing algorithm consisting of the following steps:

1. Set a = 0 and b = 0.
2. Set the pos point's position to the screen center.
3. Set a += b.
4. Set b += 0.5.
5. Move the pos point a step of fixed length in the direction defined by the

angle a measured in degrees.
6. Each 100 steps change the drawing color to a new color, generated randomly.
7. Draw a line between the last and current positions of pos.
8. Go to step 3.

This algorithm is a kind of generative art algorithm—it is short and can generate
interesting and unexpected drawings.

Chapter 2

[51]

The result of the algorithm will be a picture with the the colored trajectory of
pos moving on the screen. The b value grows linearly, hence the a value grows
parabolically. The value of a is an angle that defines the step pos will move. It is not
easy to predict the behavior of steps when the angle changes parabolically, hence it is
hard to imagine how the resultant curve will look. So let's implement the algorithm
and see it.

We will use the ofFbo fbo object for holding the generated picture.

This is example 02-2D/06-Spirals.

The example is based on the emptyExample project in openFrameworks. In the
testApp class declaration of the testApp.h file, add declarations for a, b, pos, fbo,
and some additional variables. Also, we declare the function draw1(), which draws
one line segment by performing steps 3 to 7 of the drawing algorithm.

double a, b; //Angle and its increment
ofPoint pos, lastPos; //Current and last drawing position
ofColor color; //Drawing color
int colorStep; //Counter for color changing
ofFbo fbo; //Drawing buffer
void draw1(); //Draw one line segment

Note that a and b are declared as double. The reason is that a grows fast, so the
accuracy of float is not enough for stable computations. However, we will play
with the float case too, in the Playing with numerical instability section.

The testApp::setup() function initializes the fbo buffer, fills it with a white color,
and sets initial values to all variables.

void testApp::setup(){
 ofSetFrameRate(60); //Set screen frame rate

 //Allocate drawing buffer
 fbo.allocate(ofGetWidth(), ofGetHeight());

 //Fill buffer with white color
 fbo.begin();
 ofBackground(255, 255, 255);
 fbo.end();

 //Initialize variables
 a = 0;

Drawing in 2D

[52]

 b = 0;
 pos = ofPoint(ofGetWidth() / 2, ofGetHeight() / 2);
 //Screen center
 colorStep = 0;
}

The testApp::update() function draws line segments in fbo by calling the draw1()
function. Note that we perform 200 drawings at once for obtaining the resultant
curve quickly.

void testApp::update(){
 fbo.begin(); //Begin draw to buffer
 for (int i=0; i<200; i++) {
 draw1();
 }
 fbo.end(); //End draw to buffer
}

The testApp::draw() function just draws fbo on the screen.

void testApp::draw(){
 ofBackground(255, 255, 255); //Set white background

 //Draw buffer
 ofSetColor(255, 255, 255);
 fbo.draw(0, 0);
}

Note that calling ofBackground() is not necessary here because fbo fills the whole
screen, but we have done so uniformly with other projects.

Finally, we should add a definition for the draw1() function.

void testApp::draw1(){
 //Change a
 a += b * DEG_TO_RAD;
 //a holds values in radians, b holds values in degrees,
 //so when changing a we multiply b to DEG_TO_RAD constant

 //Change b
 b = b + 0.5;

 //Shift pos in direction defined by angle a
 lastPos = pos; //Store last pos value
 ofPoint d = ofPoint(cos(a), sin(a));
 float len = 20;

Chapter 2

[53]

 pos += d * len;

 //Change color each 100 steps
 if (colorStep % 100 == 0) {
 //Generate random color
 color = ofColor(ofRandom(0, 255),
 ofRandom(0, 255),
 ofRandom(0, 255));
 }
 colorStep++;

 //Draw line segment
 ofSetColor(color);
 ofLine(lastPos, pos);
}

In the original algorithm, described at the beginning of the section, a and b are
measured in degrees. In the openFrameworks implementation, we decide to hold b
in degrees and a in radians. The reason for this will be explained later, in the Playing
with numerical instability section. So, in the code, we convert degrees to radians using
multiplication to the DEG_TO_RAD constant, which is defined in openFrameworks and
is equal to π/180 degrees.

a += b * DEG_TO_RAD;

Run the project; you will see a curve with two spiral ends constantly changing
their color:

Drawing in 2D

[54]

This particular behavior of the curve is determined by the parameter 0.5 in the
following line:

b = b + 0.5;

The parameter defines the speed of increasing b. Change this parameter to 5.4 and
5.5 and you will see curves with 4 and 12 spirals, as shown here:

Try your own values of the parameter. If the resultant curve is too large and
does not fit the screen, you can control its scale by changing the len value in
the following line:

float len = 20;

For example, if you set len to 10, the resultant curve shrinks twice.

Playing with numerical instability
In the openFrameworks code, we declare a and b as double values. The double type
has much more accuracy when representing numbers than float, and it is essential
in this example because a grows fast.

Chapter 2

[55]

But what will happen if we declare a and b as float? Do it! Replace the line double
a, b; with float a, b; and run the project. You will see that the resultant curve
will be equal to the curve from the double case just in the first second of the running
time. Then, the centers of the spirals begin to move.

Gradually, the two-spiral structure will be ruined and the curve will demonstrate
unexpected behavior, drawing circles of different sizes.

Drawing in 2D

[56]

The reason for such instability is that the values of a are computed with
numerical inaccuracy.

Note that the exploited instability effect can depend on the floating-point arithmetics
of your CPU, so your resultant pictures can differ from the presented screenshots.

In many serious tasks such as physical simulation or optimal
planning, we need to have the exact result, so such computing
instability is unallowable. But from the creative coding and
generative art field point of view, such instability lets you create
interesting visual or audio effects. So such instability is often
permitted and desirable. For more details on the mathematics of
such processes, read about the deterministic chaos theory.

Now change the parameter 0.5 in the line b = b + 0.5; to 17, and you will see a
big variety of shapes, including triangles, squares, heptagons, and stars. Then try
the values 4, 21, and your own. You will see a large number of similar but different
pictures generated by this simple drawing algorithm.

Finally, note that the main computing lines of the algorithm are the following:

a += b * DEG_TO_RAD;
//...
b = b + 0.5;
//...
ofPoint d = ofPoint(cos(a), sin(a));

These are very sensitive to any changes. If you change it somehow, the resultant
curves will be different (in the float case). In this sense, such creative coding can be
considered art because it depends heavily on the smallest code nuances, which often
cannot be predicted.

Screen grabbing
Sometimes it is desirable to save the picture drawn by your project in the file. You
can do it using tools of your operating system, but it's more comfortable to do it
right in your project. So let's see how to save the contents of your project screen to an
image file.

For such purposes, we need to use the ofImage class for working with images.
Though the class is considered in Chapter 4, Images and Textures, for screen grabbing,
it is just enough to understand that the ofImage object holds an image.

Chapter 2

[57]

The following code saves the current screen to file on the pressing of the Space bar. It
should be added to the testApp::keyPressed() function as follows:

//Grab the screen image to file
if (key == ' ') {
 ofImage image; //Declare image object

 //Grab contents of the screen
 image.grabScreen(0, 0, ofGetWidth(), ofGetHeight());

 image.saveImage("screen.png"); //Save image to file
}

The parameters of the image.grabScreen() function specify the rectangle of the
grabbing. In our case, it is the whole screen of the project.

This code is implemented in the 02-2D/06-Spirals example. Run it and press the
Space bar; the contents of the screen will be saved to the bin/data/screen.png file
in your project's folder.

The PNG files are small and have high quality, so we often use
these for screen grabbing. But, writing to a PNG file takes some
time because the image has to be compressed. It takes up to several
seconds, depending on the CPU and image size. So if you need to
save images fast, use the BMP file format.

image.saveImage("screen.bmp");

Additional topics
In this chapter, we have considered some of the basic topics of 2D drawing. For
reading further on openFrameworks 2D capabilities, we suggest the following topics:

• Drawing text using the function ofDrawBitmapString() or the class
ofTrueTypeFont. See the openFrameworks example examples/graphics/
fontShapesExample.

• Drawing filled shapes using the functions ofBeginShape(), ofVertex(),
and ofEndShape(). See the openFrameworks example examples/graphics/
polygonExample.

• Creating PDF files with openFrameworks drawings. Such files will contain
vector graphics suitable for high-quality printing purposes. See the
openFrameworks example examples/graphics/pdfExample.

Drawing in 2D

[58]

For deeper exploration of the world of 2D graphics, we suggest the following topics:

• Using Perlin noise for simulating life-like motion of objects. See Appendix B,
Perlin Noise.

• Using the algorithmic method of recursion for drawing branched structures
like trees.

If you are interested in playing with generative art, explore the huge base of
Processing sketches at openprocessing.org. Processing is a free Java-based
language and development environment for creative coding. It is very similar to
openFrameworks (in a way, openFrameworks was created as the C++ version of
Processing). Most of the Processing examples deal with 2D graphics, are generative
art projects, and can be easily ported to openFrameworks.

Summary
In this chapter we learned how to draw geometrical primitives using control points,
perform transformations of the coordinate system, and work with colors. Also, we
studied how to accumulate drawings in the offscreen buffer and considered the
generative art example of using it. Finally, we learned how to save the current screen
image to the file.

In the next chapter we will continue learning 2D graphics and will consider one
powerful method of generating fascinating animations and drawings – particle systems.

Building a Simple
Particle System

Particle systems are used in computer graphics for drawing fuzzy-shaped objects
such as fire, clouds, and trails of dust. The basic idea for such systems is drawing a
large number of small, moving particles and controlling their motion.

Here we consider the basic principles of modeling and drawing particle systems and
demonstrating them by building a simple 2D particle system. In this chapter, we will
cover the following topics:

• The basics of particle systems
• A single particle
• An emitter
• The attraction, repulsion, and spinning forces
• Graphical user interface

By the end of this chapter, you will have a fully-featured project for experimenting
with the particle system.

This is the only chapter where we create custom C++ classes.

Building a Simple Particle System

[60]

The basics of particle systems
Objects such as clouds and fire have no distinct shape, so it is hard to draw them
using polygons. The novel method for drawing such objects was proposed by
William T. Reeves in his article, Particle Systems—a Technique for Modeling a Class of
Fuzzy Objects (ACM Transactions on Graphics, April 1983). The idea is in using
particle systems, which are controllable sets of particles—small independently
moving objects, considered as elementary components of the rendered object.

Today, particle systems play an important role in 2D and 3D computer graphics as
a tool for photorealistic rendering of real-world fuzzy objects. Also, they are widely
used for experimental and creative coding graphics.

Particles are independent objects that move according to some rules such as gravity,
force, and friction. Each particle has a number of attributes such as position, velocity,
lifetime, size, and color that changes with time.

The most important property of each particle system is an interaction type between
the particles. It determines the kinds of objects and behaviors, which can be
represented by the particle system, and designates methods of its physical modeling.

Interaction types
The frequently used interaction types are as follows:

• No interaction between particles: In this case, each particle can have a limited
or an infinite lifetime. New particles can be generated from some point or
region called emitter. Also, points can attract to or repel from some points or
regions. This interaction type is appropriate for modeling sparse objects such
as clouds, fire, traits, and also fireworks. Actually, this type was considered by
William Reeves in his article and is considered later in this chapter.
You can play with a particle system consisting of a fixed number of particles
with infinite lifetime in the openFrameworks example, examples/math/
particlesExample. Use keys 1, 2, 3, and 4 for switching between several
modes of the project; in these modes, particles will attract or repel from the
mouse position, get attracted to some random points on the screen, or just
fall like snowflakes.

Chapter 3

[61]

• Particles attract to and repel from other particles: In this case, the attraction
and repulsion forces between two particles usually depend on the distance
between them. For example, particles that are far attract, and particles that
are closer repel. Such particle systems are used for modeling micro or
macro physical systems such as molecules or galaxies and also for
modeling the flocks.

Number of particles' pairs grow in a square law of particles' number.
For example, if we have a particle system with 10,000 particles, there
are 10,000 × 9,999 / 2 ~ 50 millions of particles' pairs. So performing
direct calculations of all possible pairs' interactions is very inefficient,
and methods such as geometric hashing are always used for
computations' speedup.

• Particles interact in a complex way, indirectly, through some underlying
nonstationary field. In this case, the field affects the particles' velocity,
and (in some models) particles can affect the field itself. The most widely
known example of such an interaction is fluid mechanics, modeled by the
Navier–Stokes equations. Fluid mechanics is quite complex to implement
and consumes a lot of computational resources, but it exhibits behaviors
(that are impossible in simpler interaction types), such as vortices and
turbulence. Particle systems using this interaction are widely used in 2D
and 3D graphics for photorealistic modeling of smoke, water, and many
other objects, and, of course, for experimental graphics.

In openFrameworks, there exists an excellent implementation of
fluid mechanics in an addon, ofxMSAFluid, by Memo Akten. You
can download it from ofxaddons.com. See Appendix A, Working
with Addons, for details on addons.

Particle systems are quite huge objects, so computing and rendering them can be a
challenging task. In the next two subsections, we will consider various methods for
doing it.

Building a Simple Particle System

[62]

Computing particles' physics
Usually, each particle in a particle system is constantly moving. Hence, before each
rendering step, we need to recompute the position, velocity, size, color, and other
attributes using the chosen physical modeling method. The algorithmic complexity
of such recomputing linearly depends on the number of particles.

For achieving high-quality graphics, particle systems should consist of
thousands and even millions of particles. So computing particles' physics is
often a resource-consuming task that affects the structure of the whole project.
There are several schemas of organizing such computing. They are as follows:

• Single core computing: This performs all the computing in the
testApp::update() function. This is the simplest method, which uses a single
CPU's core. It lets us operate in openFrameworks with 10,000 to 40,000 particles
at 60 FPS. This method is used in projects where the number of particles is in
the specified range. Also, it is often used for prototyping a project.

• Multiple core computing: This divides a particle system into several
smaller subsystems and processes each of them in a separate thread. The
operating system automatically distributes the threads' execution among all
the available CPU's cores. This is the simplest way for revealing the power
of all your CPUs' cores and to speedup the calculations. For doing this in
openFrameworks, use the ofThread class (see its usage in openFrameworks'
example, examples/utils/threadExample).
The speedup in this case highly depends on a number of available cores and
the speed of a separate core. A typical PC has 4 to 16 cores working at 2 to 3
GHz, and the Intel Xeon Phi coprocessor has 60 cores working at 1 GHz. So,
in principle, it is possible to compute a million particles in real time.

Until now we have considered CPU-based methods. All other methods are
GPU-based and let us operate easily with 100,000 to 1,000,000 particles
(depending on the video card). Let us see these methods:

• Using vertex shaders: We use this to set the initial positions of particles
in the ofMesh object and then apply the vertex shader for changing its
position in time. This method is simple and works fast but is limited. It
creates non-interactive particles that fly just by predefined trajectories
(specified by the vertex shader). See Chapter 7, Drawing in 3D, and
Chapter 8, Using Shaders, for details on the ofMesh class and shaders.

Chapter 3

[63]

It is possible to create interactive particles that change trajectories
depending on the changing control parameters (such as the attractor
position). To do it, you need to use a vertex shader with OpenGL's
Transform Feedback feature.

• Using fragment shaders: This is used to represent each particle by a pixel in
texture. For example, four color components (red, green, blue, and alpha) can
hold the x and y coordinates of position and velocity of a particle. We then
use a fragment shader for the corresponding processing pixels of the texture
using the Ping-Pong FBO method. This method is quite simple, works fast,
and can be used for computing particles without interaction and for moving
particles in the fluid mechanics model (without computing the field). If you
need to use more parameters for representing a particular particle, just use
several textures. Each texture gives four additional float parameters.
Such a method is implemented in the openFrameworks' example,
examples/gl/gpuParticleSystemExample.

• Using compute shaders: Compute shaders are used for universal
computations, and they let you perform advanced particles' modeling.
See a demonstration of this technology at Stan Epp's video at youtube.com/
watch?v=jwCAsyiYimY. The description of this video contains a link to the
project's source codes.

• Using other GPU technologies: Most advanced GPU-based technologies
are OpenCL and NVIDIA CUDA. You can use them for performing the
most complicated computations. Note, if you are a novice in these
technologies, adopting them in the openFrameworks project can require
some effort from you.

Rendering particles
Visually, a particle system is a large number of small homogeneous objects called
particles, which are drawn using different color and size but have quite a simple
shape. There are several ways to render a particle system on the screen:

• Drawing each particle as a primitive (circle, triangle, or star): We do this
by using functions such as ofCircle() or ofTriangle(). This way is
the simplest, but works slowly, because each drawing command is sent
separately in the video card. This method performs well only when the
number of particles is small (from 1,000 to 10,000, depends on a video card).

Building a Simple Particle System

[64]

• Drawing each particle as a sprite: Here we use one image or array of images
having the type ofImage or ofTexture (see Chapter 4, Images and Textures).
They represent all possible particles' shapes. We draw each particle using
the image.draw(x, y, w, h) function. This method is as slow as the
previous one, but the resulting picture can be more expressive because it
lets you create complex and blurred shapes. Also it is possible to use image
sequences for creating animated particles such as flying moths (see the Using
image sequence section in Chapter 5, Working with Videos).

• Drawing each particle as a sprite: We do this using ofMesh or ofVboMesh
(See details on using ofMesh and ofVboMesh in the Using ofMesh section in
Chapter 7, Drawing in 3D). Compared to the previous methods, this method
works much faster because all the drawing commands are stored in a single
array and are sent to the video card at once. Using this method, you can draw
10,000 to 1,000,000 particles (depends on the video card).
In this method, you need to tile all the desired particles' images in one "big"
image, and then use the mesh object for representing all the particles as quads
with specified texture coordinates. Note, in this method, you need to specify
four quad corners for each particle, which is a CPU-consuming task.

All the preceding methods can be used with CPU-based computing methods
(single-core computing and multiple-core computing). Now we will consider the
two most powerful methods that can be used successfully used with all the described
methods of computing:

• Using point sprites: Point sprites is a method of drawing images by
specifying only their center. Compared with using quads (described in
previous item), it is a simple and also an efficient method but is limited by
its expressive capabilities, for example, you cannot use different images for
particles and rotate them. Though, you can change the size and color of the
particles, which is enough in many projects.
See openFrameworks' example, examples/gl/pointsAsTextures, where this
method is used for drawing particles with different sizes. (For changing sizes,
it uses a vertex shader; see details about shaders in Chapter 8, Using Shaders).

• Using a geometry shader: This method is as fast as point sprites but is free
of its limitations—you can draw particles using different sprites and rotate
them. In this method, you represent each particle as a vertex and specify its
needed attributes such as the drawing position, index of using sprite, color,
angle and size and then pass it in the geometry shader. (You can pass a
particle's velocity too for affecting the shape of the particle on the screen.)
The shader translates each particle in a quad that is rendered on the screen.

Chapter 3

[65]

Note that a geometry shader can also draw particles not as sprites but as
shapes consisting of a number of lines (for example, stars) and constantly
change their shape for obtaining vivid particles. See an example of using
the geometry shader in the The furry carpet example section in Chapter 8,
Using Shaders.

Creating a particle system – summary
Let's sum up all the described categories of interaction, modeling, and drawing. To
make a project which draws a particle system, you need to specify its properties:

• Particles interaction type: This property checks whether the particles are
independent (fire and clouds), interact with each other (flocks), or interact via
some underlying field (liquid).

• Visualization: This property lets you define how a particle will be drawn—
as a geometrical shape or a sprite—and how the particle's view should
change during its lifetime (shape, color, size, and so on).

• A desired order of the particles' number: This property lets you set a desired
order of the particles' number as 1,000 to 10,000, 10,000 to 100,000, 100,000 to
1,000,000, or more.

Having prepared this list, you should choose appropriate methods for physics
computing and visualization:

• 1,000 to 10,000 particles with simple physics can be calculated using a
single CPU core and rendered with simple methods (using ofCircle(),
ofTriangle(), or image.draw())

• 10,000 to 100,000 can be calculated with CPU too (using single or several
cores) and rendered using ofMesh

• For 100,000 to 1,000,000 particles and (or) complex physics, you definitely
should use the GPU methods for computing and rendering

If your particle system is big and complex, before implementing it,
we strongly suggest creating its prototype with several thousands
of particles for debugging basic physics by using a single CPU and
simple drawing.

In the rest of the chapter, we will implement a simple but fully-featured particle
system consisting of several thousands of particles. These particles will be
independent, and we will compute them using a single CPU's core and draw
them as circles.

Building a Simple Particle System

[66]

The aim of this project is in exploring the beauty of patterns, generated by a particle
system, having a circular symmetry. The style of particles' behavior and a set of
control parameters is taken from our Kuflex's project, Abstract Wall (see kuflex.com
for details about this project).

Let's begin with modeling and drawing just one particle.

A single particle
In this section, we will create a project that will model and draw one particle. It will
be represented by our custom C++ class, Particle.

The best C++ programming style suggests declaring and implementing each new
class in separate .h and .cpp files (in our case, it should be Particles.h and
Particles.cpp) because it improves readability and reusability of the code. But
for simplicity, we will declare and implement all the classes of the example only in
testApp.h and testApp.cpp files respectively.

This is example 03-Particles/01-SingleParticle.

The example is based on the emptyExample project in openFrameworks. In the
testApp.h file, after the #include "ofMain.h" line, add the following declaration
of a Particle class:

class Particle {
public:
 Particle(); //Class constructor
 void setup(); //Start particle
 void update(float dt); //Recalculate physics
 void draw(); //Draw particle

 ofPoint pos; //Position
 ofPoint vel; //Velocity
 float time; //Time of living
 float lifeTime; //Allowed lifetime
 bool live; //Is particle live
};

Chapter 3

[67]

The notable thing here is that the update() function has a parameter dt. This is a
time step, that is, the time in seconds between the current and the previous callings
of this function. This parameter will be used for physics computing.

The particle holds the following attributes: position (pos), velocity (vel), and time
from when it's born (time). Other attributes—color and size—will be calculated
based on the time value. The lifeTime is a constant value, meaning the maximal
time of living for the particle; when time is greater than lifeTime, the particle dies,
that is, it becomes inactive. The live value holds the current state of a particle's
activity—is it live (true) or not (false)? An inactive (dead) particle is not updated
and not being drawn.

Before implementing methods of this class, we need to represent the control
parameters for particles that fly. Each parameter should be accessible by all the
particles, and also can be changed in the testApp class. The simplest way to achieve
this is by using a global variable. Also, it is better not to use many global variables,
and hence we combine all the parameters in a separate class and declare just one
global variable.

Control parameters
Let's discuss the control parameters we should use. We want our particle to be born
inside a circular area; it means we have circular emitter, with the center eCenter and
a radius eRad. A particle will start moving with its initial random velocity limited by
some value (velRad):

Building a Simple Particle System

[68]

A particle has a limited lifetime (lifeTime). Also, we want to have a possibility to
rotate its velocity vector with a constant speed (rotate).

As a result, we obtain the following control parameters' class declaration, which you
should add in the testApp.h file:

class Params {
public:
 void setup();
 ofPoint eCenter; //Emitter center
 float eRad; //Emitter radius
 float velRad; //Initial velocity limit
 float lifeTime; //Lifetime in seconds

 float rotate; //Direction rotation speed in angles per second
};

extern Params param; //Declaration of a global variable

The last line declares param as a global variable using the extern C++ keyword. It
means that param is accessible in each C++ file, which includes the testApp.h file.
Though in our example, it is not necessary (we will use param just in the testApp.
cpp file); this method of defining global variables can be useful if you extend this
project further.

Note, the extern Params param; line is just a declaration but not a definition
of param. For successful compiling, we must add the Params param; line in the
testApp.cpp file. Also, we should define the Params::setup() function, which
sets the initial values for control parameters:

Params param; //Definition of global variable

void Params::setup() {
 eCenter = ofPoint(ofGetWidth() / 2, ofGetHeight() / 2);
 eRad = 50;
 velRad = 200;
 lifeTime = 1.0;

 rotate = 90;
}

Now, we are ready to define all the functions for the Particle class.

Chapter 3

[69]

Defining the particle functions
In the testApp.cpp file, add the constructor of the Particle class:

Particle::Particle() {
 live = false;
}

It has no parameters, so this is a default constructor of the Particle class. In C++,
such constructors are called automatically when an object of a corresponding class is
created. In our case, the constructor just sets the live value to false. It means that
all created particles will be inactive by default. To make them start flying, we need to
directly call their setup() function.

Before defining the Particle::setup() function, we insert an additional function
randomPointInCircle() definition, which returns a random vector lying in a circle
with center (0, 0) and radius maxRad:

ofPoint randomPointInCircle(float maxRad){
 ofPoint pnt;
 float rad = ofRandom(0, maxRad);
 float angle = ofRandom(0, M_TWO_PI);
 pnt.x = cos(angle) * rad;
 pnt.y = sin(angle) * rad;
 return pnt;
}

We will use this function for initializing a particle's position and velocity. Though
the randomPointInCircle(maxRad) function returns a random vector inside a
circle, the resultant probability distribution is not uniform (when maxRad is greater
than zero). For our example, such nonuniformity is not important but is interesting.

Now we define the Particle::setup() function. It initializes all the parameters and
sets the value of live to true so the particle becomes active and begins to fly:

void Particle::setup() {
 pos = param.eCenter + randomPointInCircle(param.eRad);
 vel = randomPointInCircle(param.velRad);
 time = 0;
 lifeTime = param.lifeTime;
 live = true;
}

Building a Simple Particle System

[70]

This function uses all the control parameters held in a param object, except the
velRotate value. This value will be used in the Particle::update() function,
so a user can change this parameter dynamically and it will affect the particle system.

Next, the Particle::update() function's code checks whether the particle is active
and then rotates the velocity vector, updates the position, and checks the particle's
lifetime. The input parameter dt is a time step:

void Particle::update(float dt){
 if (live) {
 //Rotate vel
 vel.rotate(0, 0, param.rotate * dt);

 //Update pos
 pos += vel * dt; //Euler method

 //Update time and check if particle should die
 time += dt;
 if (time >= lifeTime) {
 live = false; //Particle is now considered as died
 }
 }
}

The first notable thing here is how we rotate the vel vector using the vel.rotate()
function. This function performs rotation of vel, considered as a vector in 3D space,
by specifying three parameters as rotation angles in x, y, and z axes respectively. So,
in the code, we rotate in the z axis only; therefore, vel rotates just in the xy plane.
This is exactly what we need.

The second thing to mention is the use of the Euler method for updating the position
using velocity.

Chapter 3

[71]

The Euler method is a popular method used for an approximate
integration. It states that for the given continuous functions, f(t)
and g(t), if f(t) is equal to g'(t), and f(t0) is given, we can use the
following formula for an approximate computing of f(t0 + dt):
f(t0 + dt) = f(t0) + g(t0)· dt

In our case, velocity is derivative of position. Following the Euler
method, if we know the current position pos of a particle, after dt
seconds, it will be equal to the sum of pos and vel multiplied by
dt ((pos + vel) * dt). We don't care about the previous pos
values, so just replace the pos value with a new one as follows:

pos += vel * dt;

See more information on the Euler method at en.wikipedia.org/
wiki/Euler_method. There is another popular integration method,
which is more accurate than the Euler method and often used for
particles' physics computing. It is called the Verlet integration; see
en.wikipedia.org/wiki/Verlet_integration for further
details.

Finally, we define the body of the drawing function Particle::draw().This
function checks whether the particle is active and then computes the size and color
of a particle in dependence of time. During its lifetime, the size increases from 1 to
3 and then decreases back, and the color hue is constantly changing. The particle is
rendered as a circle:

void Particle::draw(){
 if (live) {
 //Compute size
 float size = ofMap(
 fabs(time - lifeTime/2), 0, lifeTime/2, 3, 1);

 //Compute color
 ofColor color = ofColor::red;
 float hue = ofMap(time, 0, lifeTime, 128, 255);
 color.setHue(hue);
 ofSetColor(color);

 ofCircle(pos, size); //Draw particle
 }
}

We specify the Particle and Params classes and now use them in the project.

Building a Simple Particle System

[72]

Implementing a particle in the project
Let's implement one particle object in the project's testApp class. Also, we will add a
possibility for particles to leave trails that will slowly disappear. We will implement
it using the offscreen buffer FBO (see the Using FBO for offscreen drawing section in
Chapter 2, Drawing in 2D).

In the testApp.h file, in the testApp class declaration, add the following declarations:

Particle p; //Particle
ofFbo fbo; //Offscreen buffer for trails
float history; //Control parameter for trails
float time0; //Time value for computing dt

The history variable will take values in the range [0, 1]. It controls the decaying
time of the trails. Value 0.0 means that trails disappear immediately (so there are no
trails), and value 1.0 means that trails are infinite. The dependence between history
and trails' length is nonlinear; trails are slightly visible when history is about 0.5,
and trails become long only when history is more than 0.8.

In the testApp.cpp file, fill the body of the testApp::setup() function with the
following code, which sets up buffer and parameters:

void testApp::setup(){
 ofSetFrameRate(60); //Set screen frame rate

 //Allocate drawing buffer
 int w = ofGetWidth();
 int h = ofGetHeight();
 fbo.allocate(w, h, GL_RGB32F_ARB);

 //Fill buffer with white color
 fbo.begin();
 ofBackground(255, 255, 255);
 fbo.end();

 //Set up parameters
 param.setup(); //Global parameters
 history = 0.995;

 time0 = ofGetElapsedTimef();
}

The notable part here is the last parameter of the fbo.allocate() function calling,
namely, GL_RGB32F_ARB.

Chapter 3

[73]

The code to call fbo.allocate() with the last optional argument
GL_RGB32F_ARB is as follows:

fbo.allocate(w, h, GL_RGB32F_ARB);

The preceding line of code means that fbo will hold the pixel color
components as the float values. This is a much more accurate
representation of colors than what we find in the default mode (in which
pixels' components are the unsigned char values). It is unimportant
when we use fbo just for accumulating drawings. But when we are
gradually erasing the buffer's content, the accuracy of the unsigned
char values is insufficient and leads to visual artifacts.
Note, the float fbo occupies four times more video memory. Also, it
may not work on old or integrated video cards. In case of problems, you
can allocate fbo using the ordinary method fbo.allocate(w, h),
though, the picture with trails will not be so clean and perfect.

The testApp::update() function computes dt, activates a particle if it is not alive,
and updates the particle state:

void testApp::update(){
 //Compute dt
 float time = ofGetElapsedTimef();
 float dt = ofClamp(time - time0, 0, 0.1);
 time0 = time;

 //If the particle is not active - activate it
 if (!p.live) {
 p.setup();
 }

 //Update the particle
 p.update(dt);
}

The dt is a time step value that is computed as a time difference between the current
time and time of previous calling of the update() function. We use the ofClamp()
function for limiting its value by 0.1. The reason for this is that sometimes time
- time0 can be a large value. (For example, if the user drags the window or hides
the application's window, update() callings can be paused—it depends on the
operating system.) So if we don't limit this, formulas in the Euler method will work
in an unstable way, and the model will literally explode.

Building a Simple Particle System

[74]

The testApp::draw() function performs drawing in the fbo buffer and then draws
it on the screen:

void testApp::draw(){
 ofBackground(255, 255, 255); //Set white background

 //1. Drawing to buffer
 fbo.begin();

 //Draw semi-transparent white rectangle
 //to slightly clearing a buffer (depends on history value)

 ofEnableAlphaBlending(); //Enable transparency

 float alpha = (1-history) * 255;
 ofSetColor(255, 255, 255, alpha);
 ofFill();
 ofRect(0, 0, ofGetWidth(), ofGetHeight());

 ofDisableAlphaBlending(); //Disable transparency

 //Draw the particle
 ofFill();
 p.draw();

 fbo.end();

 //2. Draw buffer on the screen
 ofSetColor(255, 255, 255);
 fbo.draw(0, 0);
}

Note that drawing in buffer consists of two steps: slightly erasing the current
buffer's content (level of erasing depends on the history value) and drawing
the particle. Erasing is performed by drawing a semitransparent white rectangle
in the buffer. For achieving it, we enable working with transparency by calling
the ofEnableAlphaBlending() function, and after that we disable it by calling
ofDisableAlphaBlending(). See details on working with transparency in the
Transparency section in Chapter 4, Images and Textures.

Chapter 3

[75]

Run the project. It will activate the single particle; this particle will fly and get
deactivated when its lifeTime exceeds param.lifeTime, which is 1.0 seconds. So
each second particle will be activated in a random place with random velocity. The
buffer keeps the trails, so you will see a picture as shown in the following screenshot:

Notice that the old trails gradually disappear. Also, notice that the particle's
trajectories are curvilinear because its velocity vector rotates (due to the rotate
parameter), and the particle changes its color from aqua to red. You can play with
the control parameters and see how it affects the particle's behavior.

Now, let's add to the project the capability to working with many particles.

An emitter
In this section, we add to the project the emitter, which will create particles at a
specified rate.

An example of this is 03-Particles/02-ParticlesEmitter.

The example is based on the 03-Particles/01-SingleParticle project,
implemented in the previous section. We implement the emitter right inside the
testApp class. In the class declaration, replace the following line with declaration
of a single particle Particle p; with an array of particles:

vector<Particle> p; //Particles

Building a Simple Particle System

[76]

We will delete inactive particles from any parts of the p array. So for
computational efficiency, it is preferable to use the deque class instead
of vector. But for simplicity, in this example, we use vector. It works
fast enough for our purposes in the example.
See usage of deque in the Radial slit-scan example section in Chapter 5,
Working with Videos.

Next, add the declaration of the parameter bornRate and the supplementary
variable bornCount:

float bornRate; //Particles born rate per second
float bornCount; //Integrated number of particles to born

The bornRate parameter sets the number of particles that should be born in
one second. If its value is small, the particles should not be born with each
testApp::update() calling, so we need a method of detecting when we should
emit new particles. Such a method is using the float variable bornCount, which
accumulates the number of particles that would be born. When it becomes greater
than 1.0, we emit the int(bornCount) particles.

To initialize the values bornRate and bornCount, add the following lines to the
testApp::setup() function:

bornRate = 1000;
bornCount = 0;

The main part of the modification needed for the emitter implementation is in the
testApp::update() function. It's the beginning that computes dt that remains
untouched from the previous project. Then it deletes the inactive particles from the
p array, gives birth to new particles depending on the bornRate value parameter,
and finally updates all the particles:

void testApp::update(){
 //Compute dt
 float time = ofGetElapsedTimef();
 float dt = ofClamp(time - time0, 0, 0.1);
 time0 = time;

 //Delete inactive particles
 int i=0;
 while (i < p.size()) {
 if (!p[i].live) {
 p.erase(p.begin() + i);
 }

Chapter 3

[77]

 else {
 i++;
 }
 }

 //Born new particles
 bornCount += dt * bornRate; //Update bornCount value
 if (bornCount >= 1) { //It's time to born particle(s)
 int bornN = int(bornCount);//How many born
 bornCount -= bornN; //Correct bornCount value
 for (int i=0; i<bornN; i++) {
 Particle newP;
 newP.setup(); //Start a new particle
 p.push_back(newP); //Add this particle to array
 }
 }

 //Update the particles
 for (int i=0; i<p.size(); i++) {
 p[i].update(dt);
 }
}

Finally, in testApp::draw(), you will find the ensuing lines:

//Draw the particle
ofFill();
p.draw();

Replace the preceding lines with the following lines:

//Draw the particles
ofFill();
for (int i=0; i<p.size(); i++) {
 p[i].draw();
}

The project is ready.

We suggest compiling and running the project in the
Release mode of your development environment for
better performance.

Building a Simple Particle System

[78]

Run it, and you will see a beautiful and vivid picture made by many particles flying
in curvilinear trajectories and leaving the trails, as shown in the following screenshot:

Now we add a couple of new control parameters for extending the behavior of the
particle system.

The attraction, repulsion, and spinning
forces
Let's extend our particle's model with three new control parameters—attraction/
repulsion, spinning forces inside the emitter (the force and spinning parameters),
and friction that freezes the motion (the friction parameter).

An example of this is 03-Particles/03-ParticlesForces.

Chapter 3

[79]

The example is based on the 03-Particles/02-ParticlesEmitter project,
implemented in the previous section. Add a declaration of the new parameters
to the Params class declaration:

float force; //Attraction/repulsion force inside emitter
float spinning; //Spinning force inside emitter
float friction; //Friction, in the range [0, 1]

Then add their initialization in Params::setup():

force = 0;
spinning = 0;
friction = 0;

Finally, implement these parameters by inserting the following code in the
Particle::update() function after the vel.rotate(...) line:

ofPoint acc; //Acceleration
ofPoint delta = pos - param.eCenter;
float len = delta.length();
if (ofInRange(len, 0, param.eRad)) {
 delta.normalize();

 //Attraction/repulsion force
 acc += delta * param.force;

 //Spinning force
 acc.x += -delta.y * param.spinning;
 acc.y += delta.x * param.spinning;
}
vel += acc * dt; //Euler method
vel *= (1 - param.friction); //Friction

If you run the project and notice nothing changing in the picture, it's because all the
new parameters are initialized with zeros. Now try the following sets of parameters:

• The first set is as follows:
 ° In Params::setup(), add the following:

eRad = 100;
velRad = 0;
lifeTime = 2.0;
rotate = 0;
force = 1000;
spinning = 1000;
friction = 0.05;

Building a Simple Particle System

[80]

 ° In testApp::setup(), add the following:
history = 0.9;
bornRate = 1500;

• The second set is as follows:
 ° In Params::setup(), add the following:

eRad = 300;
velRad = 0;
lifeTime = 3.0;
rotate = 500;
force = -1000;
spinning = 1000;
friction = 0.05;

 ° In testApp::setup(), add the following:
history = 0.9;
bornRate = 2500;

By running the project with these parameters, you obtain the following pictures
respectively, as shown in the following screenshot:

Chapter 3

[81]

Graphical user interface
When you play with our particle system, soon you find that adjusting parameters by
changing their values right in the code is very uncomfortable. The solution for this
is adding the Graphical User Interface (GUI) to the project that shows sliders for
changing the parameters using the mouse, as shown in the screenshot:

We have implemented a similar GUI in the example project 03-Particles/04-
Particles. There are two new classes: Slider for a single slider and Interface
for managing all the sliders.

While running the project, you can adjust all the control parameters using the mouse.
Also, you can load and save parameters' settings (presets) using keys 1, 2, ... 9, and
Shift + 1, Shift + 2, … Shift + 9. See the example's code for more details.

Finally, you can add to the project the capability to receive OSC network messages
and control it from tablets such as iPad and VJ programs such as VDMX and
Max/MSP. For details, see the Using OSC protocol section in Chapter 11, Networking.

In this example, we implemented simplest GUI for demonstrating how
to create custom GUIs in our projects. But, openFrameworks has a
variety of ready-to-use GUI classes, which implement sliders, buttons,
and checkboxes. Their values can be saved and loaded from XML files
and controlled by OSC network messages. See the examples of using
these classes in openFrameworks' folder examples/gui.

Additional topics
In the chapter, we covered just a part of particle systems' ideas and methods. For
further exploration of this field, we would suggest the following topics:

• See the great introduction on particle systems' physics (for Processing
language) in The Nature of Code, Daniel Shiffman, at natureofcode.com/book/
chapter-4-particle-systems/

• Look at the Box2D physics library, which can be used for modeling elastic
bounces between particles. Actually, this is a universal and an extremely
popular 2D physics library, which can be useful in various projects even not
related to particles. To use the library in openFrameworks, you can use the
ofxBox2d addon by Vanderlin available at ofxaddons.com.

Building a Simple Particle System

[82]

• Play with the marching cubes algorithm, which provides the other way for
rendering particles, not as sprites but as polygonal volumes in 3D space.
Such a method of particles' visualization is called metaballs, and it can be a
fruitful source of interesting visual effects. (See the Additional topics section in
Chapter 7, Drawing in 3D, for more information).

Summary
In this chapter, we covered the particle systems, a fruitful tool for generating
stunning and vivid graphics. We built a project which draws a simple particle
system. It can be used as a sketch for your further experiments with particles.

In the next chapter, we begin to consider multimedia capabilities of
openFrameworks, and start with working with images.

Images and Textures
It is often insufficient to create rich visualizations using only basic geometric
primitives. Images are the building blocks that help in adding decoration, style,
and even photorealism to an interactive scene. In this chapter we will cover the
basic operations that we can perform on images:

• Loading and drawing an image
• Rotating images
• Color modulation
• Transparency
• Creating and modifying images
• Using ofTexture for memory optimization
• Image warping and video mapping

Raster and vector images
In computer graphics and computer vision, an image is a two-dimensional picture that
is used for a wide range of purposes. There are two classes – raster and vector images.

Raster images are rectangular arrays of picture elements (called pixels) and they
are natural for representing photos from digital cameras. Modern computer screens
are physical arrays of pixels, hence the screens are natural devices for displaying
raster images.

Vector images consist of a number of graphical primitives such as lines, circles, and
curves, and they are natural for representing precise drawings such as cartoons and
graphs. Vector images can be scaled up without any loss of quality and increase in
the size of memory, hence they are used for parametrical drawings.

Images and Textures

[84]

openFrameworks works with both raster and vector images. In this chapter,
we will deal with raster images only. For working with vector images,
the examples/addons/svgExample example.

Let's consider the two basic operations with an image – loading an image from a file
and drawing it on the screen.

Loading and drawing an image
For loading and drawing an image, you need to declare the image object, load the
image from a file, and add a drawing function call in the testApp::draw() function.
Perform the following steps:

1. Declare the image as an ofImage object:
ofImage image;

The best way is to declare images in the testApp class declaration in the
testApp.h file. For simplicity, sometimes we will declare them right on
top of the testApp.cpp file.

2. Load an image from a file using the loadImage function:
image.loadImage(fileName);

Here, fileName is a string value specifying the filename; for example,
sunflower.png. Normally, images should be located in the bin/data folder
of your application. If you want to use an image from another folder, it is
possible to use absolute paths; for example, image.loadImage("C:\\
myimage.png") in Windows.

3. Draw the image using the image.draw(x, y) function inside the
testApp::draw() function. Here, x and y are float values specifying
the top-left corner of the image on the screen.

Let's implement these steps in a project. It just draws a single image on the screen.
The project is based on openFrameworks' emptyExample example. Copy the folder
with the example and rename it. Then place the image sunflower.png into the bin/
data folder of the project. Now, replace the beginning of the testApp.cpp file with
the following code:

#include "testApp.h"

ofImage image; //Declare image object

void testApp::setup(){
 //Load image file

Chapter 4

[85]

 image.loadImage("sunflower.png");
}

void testApp::update(){
}

void testApp::draw(){
 //Set up gray background
 ofBackground(128, 128, 128);

 //Draw image with top left corner x=100, y=50 pixels
 image.draw(100, 50);
}

This is example 04-Images/01-ImageDraw.

Run the project; you will see the image shown in the following screenshot on
the screen:

As you can see, we used an image in PNG file format. Besides, openFrameworks
allows us to load and save images in JPG, BMP, and TIFF file formats. Among these,
PNG is the most usable because it keeps the high quality of the original image, can
maintain transparency, has small file size, and decodes very fast. JPG is good for
smooth and realistic images such as photos. This format can reduce visible image
quality, and does not work with transparency, but has smaller file size in case of
real-life photos. BMP and TIFF store images in uncompressed form. They are good
for holding and processing images without losing quality. They are rarely used in
interactive applications because their file sizes are too large and image loading from
such files is slow.

Images and Textures

[86]

You can not only load images but also save them to PNG, JPG, BMP, or TIFF files.
For such purposes, use the image.saveImage() method. See the following example:

image.saveImage("test.png");

It is possible to move, scale, and stretch images on the screen using the overloaded
version of the draw() method: image.draw(x, y, w, h). It draws the image
object, additionally specifying the width w and the height h in pixels.

Also, there are overloaded versions of the image.draw() method which allows us to
simplify the code:

• image.draw(p) – draws image using point p of type ofPoint
• image.draw(rect) – draws image using rectangle rect of type

ofRectangle

For retrieving the original image size in pixels, you can use its width and height
fields, image.width and image.height, having type int. The following are
examples of using these:

• Drawing an image that is 50 percent of its size with top-left corner at (0, 0):
image.draw(0, 0, image.width*0.5, image.height*0.5);

• Drawing an image with width equal to 300 pixels and proportional height:
image.draw(0, 0, 300, 300.0*image.height/image.width);

• Drawing an image with arbitrary proportions; for example, width 100 and
height 200:
image.draw(0, 0, 100, 200);

• Images can be flipped using a negative value for width or height. For
example, for vertical flipping use the following code:
image.draw(0, image.height, image.width, -image.height);

Instead of writing big formulas inside the arguments of the image.
draw(x, y, w, h) method, you can use the ofTranslate(x,
y) and ofScale(scaleX, scaleY) methods for translating and
scaling the coordinate system, which is used for drawing everything on
the screen. (See the Coordinate system transformations section in Chapter 2,
Drawing in 2D for details.) You can call ofTranslate() and ofScale()
in the required succession to obtain the desired transformations. If you
are not very familiar with coordinate transformations, it will seem harder.
But, trust me, it makes your code cleaner and easy to read and maintain.
Also, see the next section for details.

Chapter 4

[87]

Rotating images
The image.draw() method does not have parameters to rotate images on
arbitrary angles. To achieve this effect, we need to work with coordinate system
transformations, which are described in detail in the Coordinate system transformations
section in Chapter 2, Drawing in 2D.

We need to carry out the following steps for drawing a rotated image:

1. Store the current transformation matrix using ofPushMatrix().
2. Change the matrix by applying rotation transformation using ofRotate().
3. Draw the image using image.draw().
4. Restore the original transformation matrix using ofPopMatrix().

The following code illustrates these steps. It draws the image rotated at 10 degrees
around the current center of coordinates, which is (0, 0).

void testApp::draw(){
 ofPushMatrix(); //Store the transformation matrix
 ofRotate(10.0); //Applying rotation on 10 degrees
 image.draw(0, 0); //Draw image
 ofPopMatrix(); //Restore the transformation
}

Sometimes, we will want to rotate an image around its center instead of the top-left
corner. To achieve this, we need to translate the center of coordinates to the desired
center of rotation, rotate the coordinate system, and finally draw an image translated
in such a way that the center of the image is located in the coordinate center. The
following code demonstrates this by drawing an image that slowly rotates over time:

void testApp::draw(){
 ofPushMatrix ();

 //Shift center of coordinate system (0,0) to the desired
 //point, which will be rotation center
 ofTranslate(500, 400);

 //Rotate coordinate system, 10 degrees per second
 ofRotate(10.0 * ofGetElapsedTimef());

 //Draw image in a way that its center on the screen coincide
 //with (0,0)
 image.draw(-image.width/2, -image.height/2);

 ofPopMatrix();
}

Images and Textures

[88]

Also, there is a more elegant way to draw an image centered at a particular point.
Instead of using image.draw(-image.width/2, -image.height/2), we can
change the anchor point of the image; that is, a point used as the origin while
drawing an image. It can be done by calling the following function:

 image.setAnchorPercent(0.5, 0.5);

The preceding method sets the anchor point to 50 percent; that is, 50 percent of image
size, which is the center of the image. Then call the image.draw(0, 0) method,
which will draw the image, centered at (0, 0). To reset the anchor to its default state,
call image.setAnchorPercent(0, 0) or image.resetAnchor().

You can also set an anchor point by specifying it in pixel coordinates (x, y) using the
image.setAnchorPoint(x, y) function.

Using ofTranslate(), ofScale(), and ofRotate() is a good way of experimenting
with parametric drawing. Here is an example of creating a collage of images:

This is example 04-Images/02-ImageSpiral.

void testApp::draw(){
 //Set up white background
 ofBackground(255, 255, 255);

 for (int i=0; i<20; i++) {
 ofPushMatrix();

 //Translate system coordinates to screen center
 ofTranslate(ofGetWidth() / 2, ofGetHeight() / 2);

 //Rotate coordinate system on i * 15 degrees
 ofRotate(i * 15);

 //Go right on 50 * i * 10 pixels
 //in rotated coordinate system
 ofTranslate(50 + i * 10, 0);

 //Scale coordinate system for decreasing drawing
 //image size
 float scl = 1.0 - i * 0.8 / 20.0;
 ofScale(scl, scl);
 //scl decreases with i, so the images

Chapter 4

[89]

 //became gradually smaller

 //Draw image
 image.draw(-100, -100, 200, 200);

 ofPopMatrix();
 }
}

Run the project; you will see a spiral made of images, as shown in the
following screenshot:

Images and Textures

[90]

Color modulation
There is a nice way to change the overall color of a drawing image by multiplying
("modulating") the color components of each pixel by some fixed number. It is
realized by using the ofSetColor() function. Namely, calling ofSetColor(r,
g, b) or ofSetColor(r, g, b, a) before image.draw() implies that the
red, green, blue, and alpha components of each image's pixel will be multiplied
by r' = r / 255.0, g' = g / 255.0, b' = b / 255.0, and a' = a / 255.0 respectively.

Note that the parameters r, g, b, and a in ofSetColor lie in the 0 to 255 range, so r',
g', b', a' lie in the range [0..1]. So, by using such a modulation, you can decrease or
retain the color components of pixels but you cannot increase them.

For arbitrary manipulations with color components while drawing images, use the
fragment shader (see Chapter 8, Using Shaders). Also, you can change all the pixels
of the image itself. This method is good and appropriate but works slowly when it
changes the image. For details, see the Creating and modifying images section.

The following are some examples:

• Drawing an image with unchanged colors:
ofSetColor(255, 255, 255);
image.draw(0, 0, 200, 100);

• Drawing an image with half-value of colors:
ofSetColor(128, 128, 128);
image.draw(250, 0, 200, 100);

• Drawing only a red channel of an image:
ofSetColor(255, 0, 0);
image.draw(150, 0, 200, 100);

You will see the images shown in the following screenshot:

Chapter 4

[91]

You can note that the result of the color modulation resembles a tonal correction in a
photo editor such as Adobe Photoshop or Gimp.

Remember, calling ofSetColor() affects all the images being drawn after the
call. So, if you need to draw images without modulation, it is a good idea to call
ofSetColor(255, 255, 255) before drawing your images.

You can see that in these examples we didn't demonstrate the usage of the alpha
channel. This is a very important matter of transparency, and we will discuss it in
detail now.

Transparency
Using the methods described in the earlier sections, we can construct overlapped
collages of images, changing their size, orientation, and color. Until now, such collages
were made of images, which look like colored rectangles. But we often want to have
collages made of non-rectangular images, as shown in the following screenshot:

Images and Textures

[92]

In the preceding screenshot, the collage is made of a number of sunflower images,
having not a rectangular but quite a difficult curvilinear shape. Modeling such
shapes directly is a difficult and memory-consuming task. A more elegant solution,
used in raster graphics, is using the alpha channel. In this technique, we still use
rectangular images but consider the pixels as having not only color components but
also an additional alpha component that controls the pixel's opacity. The minimum
alpha value (0) means that the pixel is absolutely transparent; that is, invisible to the
user. And the maximum alpha value (255) means that the pixel is opaque. You can
prepare an image with transparent pixels using your preferred image editor, such
as Adobe Photoshop or Gimp. In the editor, remove the background pixels with
the Magic Wand tool or the Eraser tool and save the file in the PNG format. While
saving, select the 24- or 32-bit PNG format, but not an 8-bit PNG format because it
has a limited palette and isn't good for our purposes.

Note that JPG files do not maintain transparency.

The result of deleting the background is shown in the following screenshot:

There are not only the absolute transparent and opaque pixels (alpha 0 and 255)
but also everything in between (alpha values from 1 to 254). How to deal with such
pixels? The process of overlapping colors with transparency is called blending. By
default, blending a new color (r, g, b, a) over the old color (R, G, B, A) of the screen
pixel is performed using the following formulas:

• R' = (1-a/255) · R + a/255 · r
• G' = (1-a/255) · G + a/255 · g
• B' = (1-a/255) · B + a/255 · b
• A' = (1-a/255) · A + a/255 · a

Chapter 4

[93]

You can see that if a equals 255, (R', G', B', A') is equal to (r, g, b, a); that is, the
screen's pixel color is replaced by a new color. If a equals 0, (R', G', B', A') is equal
to (R, G, B, A); that is, a new pixel does not affect the screen and hence is invisible.

Blending with such formulas is called alpha-blending. It suits well for
normal collaging. But there exist other modes that are switched by using
the ofEnableBlendMode() function.

For example, the adding mode, which just sums up the colors, can be enabled using
the following line:

ofEnableBlendMode(OF_BLENDMODE_ADD);

While testing this mode, do not use the white color for the
background. Because adding colors to white color will result
in white color again! So, if you set a white background, the
resulting picture will always be pure white.

For returning to the alpha-blending mode, call the following function:

ofEnableBlendMode(OF_BLENDMODE_ALPHA);

See examples of the other built-in blending modes in the openFrameworks example
located at examples/graphics/blendingExample.

It should be noted that the built-in blending modes are useful and
simple, but fixed and, therefore, limited. The most flexible tool for
implementing special, parameterized, and nonstationary blending
modes are fragment shaders (see Chapter 8, Using Shaders).

By default, blending is enabled in openFrameworks, hence alpha channel is used
for drawing. If you need to disable blending and treat all the pixels as opaque,
call the ofDisableAlphaBlending() function. To enable blending again, call the
ofEnableAlphaBlending() function.

Disabled blending is often used for drawing FBO (see the details
on FBO in the Using FBO for offscreen drawing section in Chapter 2,
Drawing in 2D). The reason is to eliminating undesired secondary
blending, which occurs when FBO contains transparent pixels.

Images and Textures

[94]

When alpha-blending is enabled, you can draw the whole image as a semi-transparent
image by calling ofSetColor(r, g, b, a) with a less than 255. For example, the
following code draws a half-transparent image:

ofSetColor(255, 255, 255, 128);
image.draw(0, 0);

The following code demonstrates working with transparency using both alpha
channel and color modulation with the alpha component. It is based on the
emptyExample project of openFrameworks. Before running it, copy the
sunflower-transp.png file into the bin/data folder of your project.

This is example 04-Images/03-ImageTransp.

#include "testApp.h"

ofImage image; //Declare image object

void testApp::setup(){
 image.loadImage("sunflower-transp.png");
}

void testApp::update(){
}

void testApp::draw(){
 //Set up white background
 ofBackground(255, 255, 255);

 //Draw two images without color modulation
 //(but using alpha channel by default)
 ofSetColor(255, 255, 255, 255);
 image.draw(100, 0);
 image.draw(250, 0);

 //Draw half-transparent image
 ofSetColor(255, 255, 255, 128);
 image.draw(400, 0);
}

Chapter 4

[95]

On running the project, you will see two opaque sunflower images and one
half-transparent sunflower image. All images have the background pixels removed.

Using images with alpha channel is a powerful technique for creating interactive
installations in cartoon style. For example, see the images from our interactive
installation, Kuklon (Igor Sodazot, Denis Perevalov, 2011) in the following screenshot.
The installation represents an imaginary world. A funny doll that repeats the
spectator's motions lives there.

The largest image shown in the following screenshot is the resultant scene, and the
other images are parts from which the scene is built:

Images and Textures

[96]

Creating and modifying images
In the preceding sections, we considered different ways of drawing images loaded
from files. In this section, we see how to generate new images or alter an existing
image by specifying its pixels directly.

A raster image is represented as an array of pixels in memory. If we have an
image with width w pixels and height h pixels, it is represented by N = w * h
pixels. Normally, the horizontal rows of an image lie sequentially in memory:
the w pixels of the first row, then the second row, and so on to the h row.

The pixels of the image can hold differing amounts of information depending on the
image type. In openFrameworks, the following types are used:

• The OF_IMAGE_COLOR_ALPHA type denotes a colored image with
transparency. Here, each pixel is represented by 4 bytes, holding red, green,
blue, and alpha color components respectively, with values from 0 to 255.

• The OF_IMAGE_COLOR type denotes colored image without transparency.
Here each pixels is represented by 3 bytes, holding red, green, and blue
components. Such images are used when no transparency pixels are
needed. For example, JPG files and images from cameras represented in
openFrameworks of this type.

• The OF_IMAGE_GRAYSCALE type denotes a grayscale image. Each pixel here
is represented by 1 byte and holds only one component of color. Most often,
such images are used for representing masks. In most situations, we use
colored images, but if your project needs a huge amount of masks or halftone
images use grayscale type, because it occupies less memory.

In this book, we are talking mainly about images of class ofImage,
where each pixel component is represented by 1 byte, with integer
values from 0 to 255 (type unsigned char). But, in some cases,
more accuracy is needed. Such situations occur when using a buffer
with gradual content erasing, or using an image as a height map. For
such purposes, openFrameworks has an image class, ofFloatImage.
The methods of the class are the same as ofImage, but each pixel
component holds a float value. For an example on how to use it, see
examples/graphics/floatingPointImageExample.
Also, there is the class ofShortImage, which works with integer
values in the range 0 to 65535; that is, unsigned short type. Such
images are a best fit for representing data from depth cameras, where
pixels hold distance to the scene objects in millimeters.
See more details on using these image types in Chapter 9, Computer
Vision with OpenCV, and Chapter 10, Using Depth Cameras.

Chapter 4

[97]

Creating images
To create image by code, we need to create a pixel array and then push it into the
image using the image.setFromPixels(data, w, h, type) method. Here data
is the pixels array, w is the image width, h is image height, and type is the image type
(OF_IMAGE_COLOR_ALPHA, OF_IMAGE_COLOR, or OF_IMAGE_GRAYSCALE).

The data should be array of unsigned char type. If we create a four-channel
image with width w and height h pixels, then array size will be w * h * 4 bytes.
For given x from 0 to w-1 and y from 0 to h-1, we have the red, green, blue, and
alpha components for the pixel (x, y) located in data[index], data[index + 1],
data[index + 2], and data[index + 3] respectively, where index equals 4 *
(x + w * y).

In the following example, the image is generated in each testApp::update()
function calling and it evolves with time.

This is example 04-Images/04-ColorWaves.

#include "testApp.h"
ofImage image; //Declare image object

void testApp::setup(){
}

void testApp::update(){
 //Creating image

 int w = 512; //Image width
 int h = 512; //Image height

 //Allocate array for filling pixels data
 unsigned char *data = new unsigned char[w * h * 4];

 //Fill array for each pixel (x,y)
 for (int y=0; y<h; y++) {
 for (int x=0; x<w; x++) {
 //Compute preliminary values,
 //needed for our pixel color calculation:

 //1. Time from application start

Images and Textures

[98]

 float time = ofGetElapsedTimef();

 //2. Level of hyperbola value of x and y with
 //center in w/2, h/2
 float v = (x - w/2) * (y - h/2);

 //3. Combining v with time for motion effect
 float u= v * 0.00025 + time;
 //Here 0.00025 was chosen empirically

 //4. Compute color components as periodical
 //functions of u, and stretched to [0..255]
 int red = ofMap(sin(u), -1, 1, 0, 255);
 int green = ofMap(sin(u * 2), -1, 1, 0, 255);
 int blue = 255 - green;
 int alpha = 255; //Just constant for simplicity

 //Fill array components for pixel (x, y):
 int index = 4 * (x + w * y);
 data[index] = red;
 data[index + 1] = green;
 data[index + 2] = blue;
 data[index + 3] = alpha;
 }
 }

 //Load array to image
 image.setFromPixels(data, w, h, OF_IMAGE_COLOR_ALPHA);

 //Array is not needed anymore, so clear memory
 delete[] data;
}

void testApp::draw(){
 ofBackground(255, 255, 255); //Set up white background
 ofSetColor(255, 255, 255); //Set color for image drawing
 image.draw(0, 0); //Draw image
}

Chapter 4

[99]

Note, for time measurement, we use the ofGetElapsedTimef() function, which
returns the float number equal to the amount of seconds from application start.
Also, we use the ofMap() function for mapping result of sin(...) (lying in
[-1, 1]) into interval [0, 255]. See details in the Basic utility functions section in
Chapter 1, openFrameworks Basics.

After running the preceding code, you will see an animated image with moving
color waves, as shown in the following screenshot:

Modifying images
Instead of creating images from nothing, you can modify existing images. For such
purposes, use the image.getPixels() function, which returns a pixel array of an
image. After changing this array, call image.update() to apply changes in the image.
Actually, image.update() loads the changed image into the video memory for
drawing on the screen; see the Using ofTexture for memory optimization section for details.

This is example 04-Images/05-ImageModify.

In the following example, we read and modify pixels of the sunflower image and
draw it on the screen. We alter the image just once, at testApp::setup(). In the
code, we did not know exactly which type has the sunflower.png image file,
OF_IMAGE_COLOR or OF_IMAGE_COLOR_ALPHA.

Images and Textures

[100]

For this reason, we made a universal code by computing the number of image pixel
components, int components, which equals image.bpp/8. Here, the image.bpp field
holds the bits per value and characterizes the number of bits allocated for each image
pixel. It can be 8, 24, or 32, which corresponds to OF_IMAGE_GRAYSCALE, OF_IMAGE_
COLOR, or OF_IMAGE_COLOR_ALPHA respectively. So, dividing the value 8, we get the
number of pixel components 1, 3, or 4. In the example, we use a color image file, so
components will be equal to either 3 or 4 (not 1).

In this example, it is convenient to use a number of components.
Sometimes, it is more handy to directly check the type of image. The
image type is held in the field image.type and gets the values OF_
IMAGE_GRAYSCALE, OF_IMAGE_COLOR, and OF_IMAGE_COLOR_ALPHA.
Always check the type or number of color components of a given image
in serious projects. Performing image modifications with incorrect
assumption of its type leads to computations that rely on incorrect pixel
array size. It can cause memory errors or result in corrupted images.

The code is given as follows:

#include "testApp.h"
ofImage image; //Declare image object

void testApp::setup(){
 image.loadImage("sunflower.png"); //Load image

 //Modifying image

 //Getting pointer to pixel array of image
 unsigned char *data = image.getPixels();

 //Calculate number of pixel components
 int components = image.bpp / 8;

 //Modify pixel array
 for (int y=0; y<image.height; y++) {
 for (int x=0; x<image.width; x++) {

 //Read pixel (x,y) color components
 int index = components * (x + image.width * y);
 int red = data[index];
 int green = data[index + 1];
 int blue = data[index + 2];

 //Calculate periodical modulation

Chapter 4

[101]

 float u = abs(sin(x * 0.1) * sin(y * 0.1));

 //Set red component modulated by u
 data[index] = red * u;

 //Set green value as inverted original red
 data[index + 1] = (255 - red);

 //Invert blue component
 data[index + 2] = (255 - blue);

 //If there is alpha component or not,
 //we don't touch it anyway
 }
 }
 //Calling image.update() to apply changes
 image.update();
}

void testApp::draw(){
 ofBackground(255, 255, 255);
 ofSetColor(255, 255, 255);
 image.draw(0, 0); //Draw image
}

On running the project, you will see the sunflower image with non-linearly
modified colors.

Images and Textures

[102]

The preceding method for manipulating the image's pixels using image.
getPixels() is fast, but sometimes is not very convenient, because you need
to work with each pixel's color component individually. So let's consider more
convenient functions, which operate with a pixel's color using ofColor type.

Working with the color of a single pixel
There exist functions for getting and setting color of the image's pixel without
knowing the image type:

• The image.getColor(x, y) function reads color of pixel (x, y) of the
image. It returns object of type ofColor, with fields r, g, b, a, corresponding
red, green, blue, and alpha color components (see details in the Colors section
in Chapter 2, Drawing in 2D).

• The image.setColor(x, y, color) function sets color of pixel (x, y) to
color value, where color has type ofColor. After changing pixels' colors
using image.setColor(), you need to call the image.update() function for
the changes to take effect.

Be careful, the overall performance of code which uses these
functions can be slightly lower than code which uses the functions
image.getPixels() and image.setFromPixels().

Let's consider an example of using these functions for geometrical distortion of
an image.

A simple geometrical distortion example
This example distorts the geometry of an image by shifting its horizontal lines by
sine wave, which also changes with time. For achieving this, we keep the original
image in image untouched, and use it for building distorted image image2 in the
testApp::update() function.

This is example 04-Images/06-HorizontalDistortion.

#include "testApp.h"

ofImage image; //Original image
ofImage image2; //Modified image

//--

Chapter 4

[103]

void testApp::setup(){

 image.loadImage("sunflower.png"); //Load image
 image2.clone(image); //Copy image to image2
}

void testApp::update(){
 float time = ofGetElapsedTimef();

 //Build image2 using image
 for (int y=0; y<image.height; y++) {
 for (int x=0; x<image.width; x++) {
 //Use y and time for computing shifted x1
 float amp = sin(y * 0.03);
 int x1 = x + sin(time * 2.0) * amp * 50.0;

 //Clamp x1 to range [0, image.width-1]
 x1 = ofClamp(x1, 0, image.width - 1);

 //Set image2(x, y) equal to image(x1, y)
 ofColor color = image.getColor(x1, y);
 image2.setColor(x, y, color);
 }
 }

 image2.update();
}

void testApp::draw(){
 ofBackground(255, 255, 255);
 ofSetColor(255, 255, 255);
 image2.draw(0, 0);
}

Note, in the testApp::setup() function, we use the image2.clone(image)
function, which copies image to image2. In the given example it is required for
allocating image2.

Images and Textures

[104]

When you run the preceding code, you will see a project in which you will see a
waving sunflower image as shown in the following screenshot:

Learn how to implement the similar image distortion using
shaders in the A simple geometrical distortion example section
in Chapter 8, Using Shaders.

We are about to finish discussing the methods of the image's modification. Now, let's
consider useful functions for resizing, cropping, and rotating the images.

The functions for manipulating the image as a
whole
There are number of the functions, which perform the global image manipulations.
They are as follows:

• image.resize(newW, newH) – resizes the image to a new size,
newW × newH

• image.crop(x, y, w, h) – crops the image to a subimage with the
top-left corner (x, y) and size w × h

• image.rotate90(times) – rotates the image clockwise at 90 * times
degrees

• image.mirror(vertical, horizontal) – mirrors the image, where
vertical and horizontal are bool values

• image2.clone(image) – copies image into image2 (we used this function
in the preceding example)

Chapter 4

[105]

Now we will discuss the relationship between the image in the ordinary memory
used by the CPU and the video memory used by the video card. It is important for
understanding and optimizing image processing.

Using ofTexture for memory optimization
There are two types of memory in a computer – Random Access Memory (RAM),
which is used by the Central Processing Unit (CPU), and video memory, which
is used by the video card; that is, the Graphics Processing Unit (GPU). RAM is
intended for making calculations and video memory is used for drawing something
on the screen.

A typical GPU contains hundreds of computing cores and its number
is increasing every year. This is the reason why new GPUs can have
more computing power than CPUs, which has just 1 to 16 cores. Today,
almost all computations can be made on the GPU using technologies
such as shaders, OpenCL or NVIDIA CUDA. Hence the CPU is no
longer the most important unit in a computer. For example, the visual
development platform Derivative Touch Designer (for Windows only)
does its processing almost entirely on the GPU.
Though programming in GPUs is a very powerful tool, it's a little
tricky when compared to CPU programming. Also, debugging GPUs
is not so convenient yet. So, in this book, we still mainly consider
programming in CPU and only touch GPU programming when talking
about shaders in Chapter 8, Using Shaders.

The architecture of a computer assumes all images, vector graphics, and 3D objects
that will be depicted on the screen should be loaded at first into the video memory.
Images in the video memory are called textures. By default, openFrameworks's
class ofImage holds two same images. These are the pixel array in RAM that can be
accessed by image.getPixels() and its clone, the texture in the video memory that
can be accessed by image.getTextureReference().

So, when you change the pixel array of image, you need to call image.update() in
order to apply the changes to the corresponding texture.

You may ask why is such a double representation needed? Yes, indeed, it is possible
to discard the texture (using the image.setUseTexture(false) function) and
to render the pixel array directly on the screen. But this operation needs to load
the pixel array into the video memory anyway, which is a fast but nevertheless
time-consuming operation. So, if we did not change the image or wish to draw
it several times on the screen, it is better to have a texture for it.

Images and Textures

[106]

You can discard a pixel array too. Pixel arrays are just tools for writing images to
disks and a convenient way of changing it using CPUs. So, if you do not want to
change your image, it is good idea to use only textures, without having pixel arrays
in the RAM. To do so, use ofTexture instead of ofImage. In case you are using
ofTexture, your image will lie in the video memory only and will not occupy any
RAM. So you obtain memory optimization, which is crucial for large projects.

The usage of a texture in the code is much like the use of an instance of ofImage. The
following are the functions used for working with textures:

• ofLoadImage(texture, fileName) – loads texture from an image file,
fileName

• ofSaveImage(texture, fileName) – saves texture to image file,
fileName

• texture.draw(x, y) or texture.draw(x, y, w, h) – draws texture
• texture.loadData(data, w, h, format) – creates texture from

the pixel array data, where format is GL_RGBA, GL_RGB, or GL_LUMINANCE
for 4, 3, or 1 channel images respectively.

• texture.getWidth() and texture.getHeight() are used for getting
texture dimensions.

Here is example of using ofTexture for drawing images:

#include "testApp.h"

ofTexture texture; //Declare texture

void testApp::setup(){
 //Load texture from file
 ofLoadImage(texture, "sunflower.png");
}

void testApp::update(){
}

void testApp::draw(){
 ofBackground(255, 255, 255); //Set background color
 ofSetColor(255, 255, 255);
 texture.draw(0, 0); //Draw texture
}

We had discussed the basics of textures and now will see how to use it for image
warping and its application for video mapping.

Chapter 4

[107]

Image warping and video mapping
Until now, we drew images as rigid rectangles of arbitrary shapes. But there is
a possibility to draw an image as if it were made from rubber. To achieve this
effect, the image is decomposed into a mesh consisting of a number of triangles or
quadrangles (quads). Each triangle or quad is rendered with an arbitrary position
on its vertices while preserving adjacency relation in the mesh. This gives a rubbery
effect to the image.

Another way to geometrically achieve image distortion is direct pixel
modification of the image, which was discussed earlier. But for big
images, such methods often work too slowly.
A faster way to draw images with arbitrary modification is using
shaders (see the Creating video effects with fragment shaders section in
Chapter 8, Using Shaders).

Such methods can be used for implementing the video mapping technology; also
known as projection mapping. This technology involves the use of projectors for
projecting images on non-flat surfaces and objects such as sculptures, buildings, and
custom-made constructions such as polyhedrons. In this technology, one or several
projectors are mounted in a way that the desired object's surfaces are illuminated by
the projector's light. Then the computer generates and sends images to the projectors
to draw solid colors, textures, or even moving objects on this surfaces. Often, it is
achieved by rendering normal images and then warping these on the object's surface.
The parameters of warping are tuned manually or automatically on the stage when
projectors and objects are physically mounted and fixed.

The following screenshot shows an example of video mapping onto a real head
sculpture using one projector (project by Igor Sodazot, 2010):

Images and Textures

[108]

You can mention what edges of the image ideally fit the edges of the sculpture. This
was achieved by warping the image's edges interactively, by manually shifting mesh
vertices in the video editor.

The most popular and advanced tool for video mapping is
MadMapper. You can send images from openFrameworks
to MadMapper using the ofxSyphon addon (which performs
image transfer via the Syphon protocol). See Appendix A,
Working with Addons for more details.

Here we consider the simplest example of warping and video mapping; that is,
warping a rectangular image. This model will be mapped onto a flat rectangular
surface that is rotated in 3D with respect to the projector.

The example allows you to arbitrarily move the corners of the image that is
displayed on the screen. To select one of the four corners of the image, press the
key 1, 2, 3, or 4. To move the selected corner, press any cursor key. The corners'
enumeration is shown as follows:

The code's basic function is texture.draw(p[0], p[1], p[2], p[3]), which
warps the texture to the selected corner points.

Chapter 4

[109]

This is example 04-Images/07-VideoMapping.

#include "testApp.h"
ofTexture texture;
ofPoint p[4]; //Corners
int ind = 0; //Index of selected corner, 0..3

void testApp::setup(){
 //Load texture image
 ofLoadImage(texture, "sunflower.png");

 //Set up initial corners
 p[0].x = 100; p[0].y = 100;
 p[1].x = 300; p[1].y = 100;
 p[2].x = 300; p[2].y = 300;
 p[3].x = 100; p[3].y = 300;
}

void testApp::update(){
}

void testApp::draw(){
 ofBackground(255, 255, 255);

 ofSetColor(255, 255, 255);

 //Draw texture by specifying its target corners points
 texture.draw(p[0], p[1], p[2], p[3]);
}

//Process keys
void testApp::keyPressed(int key){
 //Select corner to edit by keys 1,2,3,4
 if (key == '1') { ind = 0; }
 if (key == '2') { ind = 1; }
 if (key == '3') { ind = 2; }
 if (key == '4') { ind = 3; }

 //Move selected corner by cursor keys
 if (key == OF_KEY_LEFT) { p[ind].x -= 10; }
 if (key == OF_KEY_RIGHT) { p[ind].x += 10; }
 if (key == OF_KEY_UP) { p[ind].y -= 10; }
 if (key == OF_KEY_DOWN) { p[ind].y += 10; }
}

Images and Textures

[110]

Run the project; you will see the sunflower image. Then press keys 1, 2, 3, or 4 to
select a corner and move the corner with the cursor keys. If you have a projector,
you can get video mapping of the sunflower image to any rectangular surface; for
example, on the side of a carton.

If you move corners a lot, the image distortion will be high. You can see that warping
is not very good along the diagonal, as there will be some unwanted additional
distortion. The reason for this is that the texture.draw() method in the example
performs warping by drawing two triangles. So the mapping mesh here consists of two
triangles with a common (diagonal) edge. For smoother results, we need to construct a
more complex mesh that consists of least 50 triangles and recalculate its vertices when
the corners move. It can be done using bilinear interpolation and drawing a mesh
using the ofMesh class, but it is out of the scope of this chapter. See the Using ofMesh
section in Chapter 7, Drawing in 3D, for details on mesh drawing.

Using images for internal calculations
In this chapter we have considered the images mainly as building blocks of a visual
scene. In this last section, we will see how images can be used in another way, as the
source of data for internal calculations, not displaying on the screen directly. The
main examples of such usage are masks and palettes, which we'll discuss now.

An image as a mask
Color cameras and depth cameras give color and depth images that represent the
scene they capture (for example, humans in front of the camera). Such images can
be processed using pixel-by-pixel methods or with the computer vision library,
OpenCV. The result is often a binary image, which is called mask, that contains black
pixels denoting the background and white pixels denoting human silhouettes. The
mask can be applied for controlling physics and changing any parameter of your
interactive installation. The user never sees the mask image itself, but only perceives
its effect on the interactive scene's behavior. See the example of the human silhouette
mask obtained using the depth camera, Microsoft Kinect:

Chapter 4

[111]

For details on getting a color image from a camera and its processing, see
Chapter 5, Working with Videos, and Chapter 9, Computer Vision with OpenCV.
For details on obtaining and processing data from depth cameras, see
Chapter 10, Using Depth Cameras.

An image as a palette
An image can be used as a palette, which sets the color of the brush or particles in
your project. This means that you select some point p inside the image and slowly
move it by some fixed rule of Perlin noise. After each move, you just read the pixel
color from the image at the current position of p and use it for drawing with a brush
or for a particle color. We often use such techniques and create many palettes for
different objects and also for obtaining controllable coloring for our projects, which
ensures predictable behavior.

An example of a palette used in our interactive installation and a dance performance
Abstract Wall (made by Kuflex, produced by Ksenia Lyashenko, and shown at the
Microsoft event at the Garage Center for Contemporary Culture, Moscow, 2013)
are shown in the following screenshot:

Images and Textures

[112]

The installation reacts to movements of the human body and draws flying particles
with colors selected from the palette.

The method for changing colors of particles in the installation is the following:
when a particle is created, its position in the palette is set randomly at the bottom
of the palette image. During a particle's life, its position in the palette goes up, so
the particle's color slowly changes.

Another frequently used method for changing the particle's
position in the palette is using Perlin noise. See details on
Perlin noise in Appendix B, Using Perlin Noise.

Summary
In this chapter we learned how to load images from a file; render it on the screen
with different sizes, color, and transparency; create new images; and modify existing
images. We also touched upon the very basics of image warping and video mapping.

The next step is working with videos, which we will discuss in the next chapter.

Working with Videos
Using video footage is an easy way to add dynamic layers to an interactive project
scene. And processing video is the basis of modern computer-generated video art.
This chapter will cover the basic and advanced topics on playing, layering, and
processing videos in the openFrameworks projects:

• Playing a video file
• Processing video frames
• Radial and horizontal slit-scan effects
• Processing a live video from the camera
• The video synthesizer
• Using image sequences

Video basics
Video is the most usable container for dynamic media today. It consists of a number of
frames—moving images and soundtrack—all encapsulated in a single file. In principle,
each video can be represented by a sequence of separate image files for each frame and
audio files for soundtracks. But using a single file is often more comfortable.

The big advantage of using a single video file is that modern video codecs
can significantly reduce the video's file size compared to the size of image
sequence plus the soundtrack file sizes. Also, decoding video can be made
easier using GPU instead of CPU. These two reasons give a possibility to
play HD videos smoothly and at high framerates with openFrameworks.
Nevertheless, in Using image sequence section, we will see when using an
image sequence is more suitable than using a single video file.

Working with Videos

[114]

The best known file formats for video are AVI, MP4, and MOV. All these formats are
supported in openFrameworks, but in general it is preferable to use the MOV format
because openFrameworks uses Apple QuickTime SDK for playing video in Mac OS
X and Windows, and the MOV format is native for QuickTime.

To play videos in openFrameworks in Windows, you need to install
QuickTime from http://www.apple.com/quicktime/download/.

If you want to use a video from sources such as youtube.com or vimeo.com, you can
download it using services such as keepvid.com. Be careful about considering the
licensee limitations when using these videos.

If you create a video file using video editors such as Adobe AfterEffects, or maybe
in 3D software such as Autodesk 3DSMax, you should be aware of choosing the
right codec while saving your video file. Here is the list of possible usages and
corresponding codecs:

• If you want to play the video as a normal video footage, without speed
changing and using alpha channel, the best option for you is using some
MPEG4 codec (such as H.264), with large quality value settings in codec. It
will have a good quality and a small file size. Such a codec may be crucial
in case of using HD videos, because using other codecs can give a huge file,
which is hard to read in real time from the disk.
Remember, MPEG4 codecs do "deep" video compression, and use many
previous frames for decoding a new frame; so changing the direction and
speed of playing such videos can have a negative impact on the performance
of your application.

• If you want to use video as a clip for VJ-ing, consider using codec with
(Apple) Motion-JPEG.

• If you need a video with an alpha channel, use Apple-PNG format and set
Millions+ colors or 32-bit color mode. With this setting, the file size will be
larger when using Motion-JPEG, but will give very good quality and good
performance. At the time of writing this book, openFrameworks's use is
limited when using such videos. Please see details in the Using image
sequence section.

For coding videos to MOV files with different codecs, you can use
Adobe Premiere. If you work in Mac OS X, you can use simple and
free Squared 5's MPEG streamclip utility.
If you like to work with command lines, the best choice for video
conversion is open source tool ffmpeg.

Chapter 5

[115]

Playing a video file
The openFrameworks's ofVideoPlayer class is intended for playing and controlling
video. The basic usage of the ofVideoPlayer video object is the following:

1. Loading video file, specifying its name:
video.loadMovie("video.mov");

2. Starting video to play:
video.play();

3. Decoding the needed frame to show and playing the corresponding sound
chunk (best to call it in testApp::update()):
video.update();

4. Drawing the current video frame:
video.draw(x, y);

or
video.draw(x, y, w, h);

While drawing a video frame, you can think of the current frame of video as if it
were an ordinal ofImage object. So, you can use the video.width, video.height
values and set anchor using video.setAnchorPercent(percentX, percentY),
video.setAnchorPoint(x, y), and video.resetAnchor().

The following example shows the basic usage of ofVideoPlayer. It is based
on an emptyExample project in openFrameworks. Before running it, copy the
handsTrees.mov file into the bin/data folder of your project.

This is example 05-Video/01-VideoPlayback.

In the testApp.h file, inside the testApp class declaration, add the following line
with video player object video declaration:

ofVideoPlayer video; //Declare the video player object

In the testApp.cpp file, fill the bodies of the setup(), update(), and draw()
functions in the following way:

void testApp::setup(){
 video.loadMovie("handsTrees.mov"); //Load the video file
 video.play(); //Start the video to play

Working with Videos

[116]

}

void testApp::update(){
 video.update(); //Decode the new frame if needed
}

void testApp::draw(){
 ofBackground(255, 255, 255); //Set white background

 ofSetColor(255, 255, 255);
 video.draw(0, 0); //Draw the current video frame
}

When you run the code, you will see the movie playing on the screen:

Please note, that by default, ofVideoPlayer plays video with its speed based on the
time data, independently of your application rendering rate. For example, if you set
the application framerate to 60 by calling ofSetFrameRate(60), but the video has
the rate 30 fps, then video.update() will switch frames at rate 30, not 60 fps. So it is
useful to know, whether the frame is new or not. Such information can be obtained
using the Boolean function video.isFrameNew(), which returns true if a new frame
was loaded during the last video.update() calling. See the example of using the
video.isFrameNew() function in the The replacing colors example section and other
examples given in the following sections.

Chapter 5

[117]

Controlling the video playback
There are a number of additional functions in ofVideoPlayer for controlling video
playing and positioning:

• The stop() function is used to stop playing the video.
• The setPaused(bPause) function sets/resets pause of video playing,

where bPause has type bool. If you pause the video, you can still switch
its frames using the setFrame() or setPosition() function. It is extremely
useful for the exact frame number control.

• The setPosition(pos) function sets playing position in file, where pos is
a float number in range [0, 1].

• The setFrame(frame) function sets current frame to frame, where frame
is an integer value from 0 to video. getTotalNumFrames() - 1.

• The getCurrentFrame() function returns current frame number.
• The getTotalNumFrames() function returns number of frames in video.
• The getDuration() function returns internal duration of video in seconds

as a float number.
• The isLoaded() function returns true if video is successfully loaded, this

can be used for handling errors like a mistake in filename.
• The isPaused() and isPlaying() functions return value of type bool on

pausing and playing state correspondingly.
• The getIsMovieDone() function returns true when the last frame of the

video is achieved.

You can freely change the speed of playing using the following functions:

• The setSpeed(speed) function where speed is a float value. Value 1.0
means the normal video speed and value 2.0 means the double speed.
Negative speed plays the video backwards; for example, value -1.0 means
backward playing with normal speed.

• The getSpeed() function returns float value equal to the current
playing speed.

Please note that you can change the speed continuously. It is an
important feature for adding lifelikeness to the video backgrounds.
For example, if you are playing a video of a rotating mill, you can
slowly change the speed of the video to simulate wind changes using
Perlin noise. See Appendix B, Perlin Noise, for more details.

Working with Videos

[118]

For creating nonstop playing videos, it is possible to set up and control the loop
mode using the following functions:

• The setLoopState(state) function sets the looping mode, where state
can be one of the three values:

 ° OF_LOOP_NONE: Looping is disabled and playing stops when the
video reaches the last frame.

 ° OF_LOOP_NORMAL: When playing reaches the last frame, it jumps to
the first frame. This is default loop state.

 ° OF_LOOP_PALINDROME: Also known as ping-pong looping, this loop
goes forward and backward infinitely, and is good for creating a
smooth "infinite video" from any video piece.

• The getLoopState() function returns the current loop mode.

If the video contains an audio track, you can adjust its playing volume, changing
it using the setVolume(volume) method, where volume is a float number in
range [0, 1].

Processing a single video frame
Now we begin to learn the methods of processing video. Values of pixels in the
current video frame can be read in a way similar to the one in ofImage, using
access to its pixel array data:

unsigned char *getPixels()

Also, here is the getPixelRef() method, which returns a reference to a pixel array
of the current frame, represented by a special class ofPixels.

Note that the ofImage class has getPixelRef()
too and can be used in a similar way.

It is easy to get the pixel color using pixels.getColor(x, y), which returns
the ofColor value of pixel (x,y). Compared to directly working with pixels
data using getPixels(), it is a relatively slow operation, but is more simple
and convenient. Note, ofPixels has useful properties such as getWidth() and
getHeight() that are used for getting the width and height, and also the channels
value, which holds the number of channels in the image (1, 3, or 4).

Chapter 5

[119]

The vertical lines image example
See the example where we read the colors of center horizontal line pixels and draw
vertical lines with the corresponding colors. The project is similar to the previous
example, only testApp::draw() is changed:

This is example 05-Video/02-VideoVerticals.

void testApp::draw(){
 //Getting reference to the pixel array
 ofPixels &pixels = video.getPixelsRef();

 //Define variables w, h equal to frame width and height
 int w = pixels.getWidth();
 int h = pixels.getHeight();

 //Scan center horizontal line
 for (int x=0; x<w; x++) {
 //Getting color of the center line
 ofColor color = pixels.getColor(x, h / 2);

 //Draw a vertical line using this color
 ofSetColor(color);
 ofLine(x, 0, x, h);
 }
}

Running this example, you will see a movie with frames built from a set of colored
vertical lines. The color of each line is taken from the central horizontal line of the
original movie's frame:

Working with Videos

[120]

The important thing in the example is using the & symbol in the line:

ofPixels &pixels = video.getPixelRef();

This symbol means that we are getting just a reference of the pixel array data, and
not copying the data itself. So this is an extremely fast operation, just like a pointer
assignment. But when the next frame is obtained, we will lose old pixels data and
it will be a reference on the new frame, or maybe some memory error can occur.
Instead, if we call it another way, without &:

ofPixels pixels = video.getPixelRef();

The data will be copied to pixels, and stored there as long as we want. It is safe,
but consumes a lot of memory and hence is a consuming operation (that can be
noticeable for large frame size).

It is possible to change pixel colors in ofPixels, using pixels.setColor(x, y,
color) with color value of type ofColor. But the pixel array obtained from the video
frame is not intended for changing its image, so you will not see the changes drawing
it with video.draw(). If you want to draw the changed pixels, create an ofImage
object and load the pixels array into this image, using the setFromPixels() function.

The replacing colors example
Let's consider an example where we change the color components of all the framed
pixels using a random-generated table and draw the resulting image. Also, the
example demonstrates the usage of the video.isFrameNew() function.

It is based on the emptyExample project in openFrameworks. Before running it, copy
the handsTrees.mov file into the bin/data folder of your project.

This is example 05-Video/03-VideoReplacingColors.

In the testApp.h file inside the testApp class declaration, add the following lines:

ofVideoPlayer video; //Declare video player object
ofImage image; //Declare image object
int table[16]; //Declare table for color replacing

Chapter 5

[121]

In the testApp.cpp file, fill the bodies of the setup(), update(), and draw()
functions in the following way:

void testApp::setup(){
 video.loadMovie("handsTrees.mov"); //Load video file
 video.play(); //Start video to play

 //Fill the table by random values from 0 to 255
 for (int i=0; i<16; i++) {
 table[i] = ofRandom(0, 255);
 }

}

void testApp::update(){
 video.update(); //Decode the new frame if needed

 //Do computing only if a new frame was obtained
 if (video.isFrameNew()) {
 //Getting pixels
 ofPixels pixels = video.getPixelsRef();

 //Scan all the pixels
 for (int y=0; y<pixels.getHeight(); y++) {
 for (int x=0; x<pixels.getWidth(); x++) {
 //Getting pixel (x,y) color
 ofColor col = pixels.getColor(x, y);

 //Change color components of col
 //using table
 col.r = table[col.r/16];
 col.g = table[col.g/16];
 col.b = table[col.b/16];

 //Set the color back to the pixel (x,y)
 pixels.setColor(x, y, col);
 }
 }

 //Set pixel array to the image
 image.setFromPixels(pixels);

Working with Videos

[122]

 }
}

void testApp::draw(){
 ofBackground(255, 255, 255); //Set white background

 //Draw the image
 ofSetColor(255, 255, 255);
 image.draw(0,0);
}

When you start the application, you will see the movie with changed pixel colors.
The rule for color changing is fixed during application execution. A color replace
table is constructed at startup using random number generator; so each time you
run the application, you will obtain a different result. The following screenshot
shows us an example:

The rule for color replacing is held in a random-generated table:

for (int i=0; i<16; i++) {
 table[i] = ofRandom(0, 255);
}

Chapter 5

[123]

And the main operation of the example is changing the color using table:

col.r = table[col.r/16];
col.g = table[col.g/16];
col.b = table[col.b/16];

Indeed, each color component lies in range [0, 255], so col.r/16, col.g/16, and
col.g/16 lies in range [0, 15]. Our table has size 16, so operation is correct. Note
that if we create table of size 256, we can use simple operations as follows:

col.r = table[col.r];
col.g = table[col.g];
col.b = table[col.b];

The resultant image will be much more "color-sprayed". (Before running the project
with such modification, you need to replace in code all constants from 16 to 256.)

Processing multiple frames
Till now we saw examples of modification and drawing video frames just like single
images. Deeper processing should involve analysis of the several frames.

If we compare two successive frames, we can find the direction and velocity
of motion for each frame pixel. Such a vector field is called optical flow. It has
many uses in video, graphics, and computer vision. Optical flow computation
is a nontrivial task of computer vision, and we will learn to do it in Chapter 9,
Computer Vision with OpenCV.

Another idea is to bufferize a number of frames and then draw parts of the frames
in different parts of the screen. The famous video effect called slit-scan or time
displacement is based on this principle. In effect, horizontal lines of the resulting
image are built from horizontal lines of several successive frames. Often, bottom
lines are taken from older frames, and top lines are made from the newest frames.
So if the object was moved horizontally in the original video, in the processed video
you see a slow-motion propagation from the top to the bottom of the frame. An
object rotating like spinning dances will look like a twisted spiral. (See the screenshot
in the Horizontal slit-scan section.)

Working with Videos

[124]

The origins of the slit-scan effect lie in mechanical slit-photography
technology developed in the 19th century. Nowadays slit-scan is
made with computers, and it is used in cinematography and art.
Slit-scan is implemented in openFrameworks' addon ofxSlitScan.
Also, there exist plugins for this effect in video editors such as
Adobe After Effects.

Radial slit-scan example
Here we consider the implementation of a circular version of the slit-scan effect,
which can be called radial slit-scan. The mouse position will define the center
where a portion of new frame is drawn. The other pixels (x, y) are filled using the
older frames, where the frame's "oldness" depends on the distance between mouse
position and (x, y).

This example is based on the emptyExample project in openFrameworks. Before
running it, copy the handsTrees.mov file into the bin/data folder of your project.

This is example 05-Video/04-VideoSlitScan.

In the testApp.h file, inside the testApp class declaration, add declaration of
video player object video, frames buffer frames, output image image, and some
other declarations:

ofVideoPlayer video; //Video player object

deque<ofPixels> frames; //Frames buffer
int N; //Frames buffer size

//Pixels array for constructing output image
ofPixels imagePixels;
ofImage image; //Output image

//Main processing function which
//computes the pixel color (x, y) using frames buffer
ofColor getSlitPixelColor(int x, int y);

Chapter 5

[125]

You will note that the buffer of frames is declared here as deque<ofPixels> frames.
Class deque is C++ Standard Template Library container, holding items of any class. In
our case, such a class is ofPixels. You can think of frames as a dynamic array, which
can change its size during runtime. It provides an indexed access to any item such as
frames[i], and most importantly, it efficiently adds and removes items at its ends.

The deque class is very similar to the popular vector class of C++ Standard
Template Library. The vector class can be resized and has an indexed access to its
items too, and is also a little faster than deque. However, it slowly adds and removes
elements to its ends, which is crucial for our example. (While using vector, see the
Using image sequence example section.)

In the testApp.cpp file, the setup() function just reads and plays the video, and the
draw() function draws processed image on the screen:

void testApp::setup(){
 video.loadMovie("handsTrees.mov"); //Load video file

 //Play video with 1/4 of its normal speed
 //for better seeing slit-scan effect
 video.setSpeed(0.25);

 video.play(); //Start video to play

 N = 150; //Set buffer size
}

//--
void testApp::draw(){
 ofBackground(255, 255, 255); //Set white background

 //Draw image
 ofSetColor(255, 255, 255);
 image.draw(0,0);
}

Let's consider the first part of the update() function. It gradually reads frames from
movies, and stores N last frames in frames buffer in such a way that newer frames
have smaller indexes:

void testApp::update(){
 video.update(); //Decode the new frame if needed

 //Do computing only if a new frame was obtained

Working with Videos

[126]

 if (video.isFrameNew()) {
 //Push the new frame to the beginning of the frame list
 frames.push_front(video.getPixelsRef());

 //If number of buffered frames > N,
 //then pop the oldest frame
 if (frames.size() > N) {
 frames.pop_back();
 }
 }

We use frames.push_front(video.getPixelsRef()) for adding pixel array
of the current video frame item to the beginning, and we use frames.pop_back()
for removing the oldest frame. These two operations always let us have the newest
frame in frames[0], and not more than N - 1 older frames. (When the project starts,
frames buffer is empty. With the lapse of time, its size gradually increases and later
keeps equal to N.)

The second part of the update() function computes output image image using the
getSlitPixelColor(x, y) function, which will be discussed later.

 //It is possible that video player did not finish decoding
 //the first frame at first testApp::update() calling,
 //so we need check, if there are frames
 if (!frames.empty()) {
 //Now constructing the output image in imagePixels

 //If imagePixels is not initialized yet, then initialize
 //it by copying from any frame.
 //This is simplest way to create a pixel array
 //of the same size and type
 if (!imagePixels.isAllocated()) {
 imagePixels = frames[0];
 }

 //Getting video frame size for formulas simplification
 int w = frames[0].getWidth();
 int h = frames[0].getHeight();

 //Scan all the pixels
 for (int y=0; y<h; y++) {
 for (int x=0; x<w; x++) {

 //Get "slit" pixel color

Chapter 5

[127]

 ofColor color = getSlitPixelColor(x, y);

 //Set pixel to image pixels
 imagePixels.setColor(x, y, color);
 }
 }
 //Set new pixels values to the image
 image.setFromPixels(imagePixels);
 }
}

The main processing function of the example is getSlitPixelColor(x,y). It
computes and returns the pixel color (x,y) corresponding to the radial slit-scan
image. The function makes it work using frame buffer frames and current mouse
position (mouseX, mouseY):

ofColor testApp::getSlitPixelColor(int x, int y){
 //Calculate the distance from (x,y) to the current
 //mouse position mouseX, mouseY

 float dist = ofDist(x, y, mouseX, mouseY);

 //Main formula for connecting (x,y) with frame number
 float f = dist / 8.0;
 //Here "frame number" is computed as a float value.
 //We need it for getting a "smooth result"
 //by interpolating colors later

 //Compute two frame numbers surrounding f
 int i0 = int(f);
 int i1 = i0 + 1;

 //Compute weights of the frames i0 and i1
 float weight0 = i1 - f;
 float weight1 = 1 - weight0;

 //Limiting frame numbers by range from 0 to n=frames.size()-1
 int n = frames.size() - 1;
 i0 = ofClamp(i0, 0, n);
 i1 = ofClamp(i1, 0, n);

 //Getting the frame colors
 ofColor color0 = frames[i0].getColor(x, y);

Working with Videos

[128]

 ofColor color1 = frames[i1].getColor(x, y);

 //Interpolate colors - this is the function result
 ofColor color = color0 * weight0 + color1 * weight1;

 return color;
}

This example is quite CPU-intensive, so we suggest to run it in the Release mode of
your development environment. Of course, it runs in the Debug mode too, but can
give slow performance.

To improve performance further, you can implement the
algorithm using fragment shader; see the Processing several
images section in Chapter 8, Using Shaders.

Run this example and place the mouse cursor somewhere in the central area of the
video frame. You will see radial waves of motion centered in the mouse position.

Now begin to move the mouse cursor from left to right hands and back. You will
see how your movement changes time-space distribution of this interactive picture.
When you move your mouse to some point, this part of the image shows "future",
and other parts of the image gradually go to the "past", in respect to the video. It is
simple to understand from algorithmic point of view: the closer the pixel is to mouse
position, the newer the corresponding frame is for its color. The example of the
resulting frame is shown in the following screenshot. The mouse cursor is pointing to
the center of the right hand, so this region is undistorted:

Chapter 5

[129]

The most important function of the example is getSlitPixelColor(x, y), which
returns the color of the pixel (x, y) computed from colors of the buffered frames. The
main formula is:

float f = dist / 8.0;

It computes the desired frame number for getting color for pixel (x,y) depending
on coordinates (x, y). It is equal to the distance between the pixel and the mouse
position to the frame number, divided by 8.0. If you change the constant 8.0 to
another value, you will notice the change in the speed of the radial wave.

Horizontal slit-scan
Change the main formula in getSlitPixelColor(x, y) using the following line:

float f = y / 8.0;

It gives "classical" horizontal slit-scan effect (which is independent of the mouse
position and hence is not interactive). The example of using this formula is shown
in the following screenshot. You can observe the specific twisting of the hands
and fingers.

Play with the formula and try other slit-scan effects by yourself.

Working with Videos

[130]

Discussing color interpolation
The last important thing to discuss in the example is color interpolation. Notice that
we compute frame number as a float, but not as an integer value:

float f = dist / 8.0;

The reason for this is our desire to visually smoothen borders between the frames
to get better results. (Check how the borders look by making truncating float f
= int(dist / 8.0);). We achieve this using color interpolation between two
successive frames with numbers i0 and i1 around f:

int i0 = int(f);
int i1 = i0 + 1;

Then we compute weights for these frame numbers in a way that the sum of
weight0 and weight1 is equal to 1. If f is closer to i0 than to i1, weight0 is
greater than weight1 and vice versa:

 float weight0 = i1 - f;
 float weight1 = 1 - weight0;

The correspondence between f, i0, i1, and weights is shown in the following diagram:

Finally, we construct the resulting color by interpolating colors of frames i0 and i1
using weights:

ofColor color = color0 * weight0 + color1 * weight1;

Chapter 5

[131]

Despite using color interpolation, you can notice "interlacing-like"
artifacts in the resulting video. The reason for this is that we need to
show in image continuous space-time motion, using just frames made
in discrete moments of time. For reduction such as an "interlacing-like"
effect, we need to shift the pixels slightly during color interpolation,
using optical flow between frames i0 and i1. You will be able to
construct such an algorithm after learning optical flow in Chapter 9,
Computer Vision with OpenCV.

Processing a live video from the camera
External and built-in webcams are the sources of live video. There are several cases
of using this capability:

• Transform input frames and show it on the screen. You then get a kind of
"magic mirror" interactive project.

• Add some objects over live video. In this way, you obtain a kind of
Augmented Reality (AR) application with 3D or cartoon objects
added over video.

• Analyze human silhouette and gestures, find human faces, and perform some
action based on this knowledge. For example, it can be the cartoon character
repeating your mimics, or gesture-based drawing interactive installation.

It is enough to use video processing methods described in the preceding sections
for creating simple art and interactive projects. For more advanced processing,
there is a need to use deeper image analyzing techniques, which will be considered
in Chapter 9, Computer Vision with OpenCV.

Now we will consider how to capture live video using openFrameworks. It can be
done with class ofVideoGrabber. The typical usage is as follows:

1. Define grabber object in the testApp class definition:
ofVideoGrabber grabber;

2. Start capture in testApp::setup():
//Select camera by its id in system
grabber.setDeviceID(0);

//Select desired grabbing frame rate
grabber.setDesiredFrameRate(30);

//Start grabbing with desired frame width and height
grabber.initGrabber(640, 480);

Working with Videos

[132]

3. Update and process frames in testApp::update():
grabber.update(); //Update grabber
if (grabber.isFrameNew()) { //Check for the new frame

 //Get pixels array
 ofPixels pixels = grabber.getPixelsRef();
 //Do some processing
 //...
}

4. Draw current frame in testApp::draw():
grabber.draw(0, 0);

Additionally, the grabber.listDevices() function shows a list of cameras
in console. It is very useful for properly choosing the camera ID in grabber.
setDeviceID().

Also, you can call grabber.setVerbose(true); for printing in console details
and warnings about grabbing.

The video synthesizer example
Let's consider the example of using live video captured from camera. We will build a
video synthesizer performing fusion of live video with a prerecorded video. Namely,
we will use colors of live video pixels for shifting pixels of the prerecorded video.

The example is based on a emptyExample project in openFrameworks. Before
running it, copy the handsTrees.mov file into the bin/data folder of your project
and connect a webcam. If you use laptop with built-in webcam, it will most probably
work by itself.

This is example 05-Video/05-VideoCameraSynth.

Chapter 5

[133]

In the testApp.h file, inside the testApp class declaration, add declaration of video
grabber grabber, video player object video, output image image, and function
synthesizeImage():

ofVideoGrabber grabber; //Video grabber

ofVideoPlayer video; //Prerecorded video

ofImage image; //Resulted synthesized image

//Synthesize image from grabber and video frames
void synthesizeImage();

The setup(), update(), and draw() functions in the testApp.cpp file demonstrate
how to run camera, read camera frames, and draw camera and resulting images
on the screen. Note how calling the synthesizeImage() function in update()
computes the output image:

void testApp::setup(){

 //Show in console all details and warnings on the grabbing
 grabber.setVerbose(true);

 //Select camera by its id in system
 grabber.setDeviceID(0);

 //Select desired camera frame rate
 grabber.setDesiredFrameRate(30);

 //Start grabbing with desired frame width and height
 grabber.initGrabber(640,480);

 //Show in the console list of connected cameras
 //if you camera did not connect, please see the list
 grabber.listDevices();

 //Load and start prerecorded movie to play
 video.loadMovie("handsTrees.mov");

Working with Videos

[134]

 video.play();
}

//--
void testApp::update(){
 grabber.update(); //Update grabber state
 if (grabber.isFrameNew()) { //Check for new frame
 //Create image using grabber and video frames
 synthesizeImage();
 }
 video.update(); //Update video state
}

//--
void testApp::draw(){
 //Set white background
 ofBackground(255, 255, 255);

 //Draw processed image
 ofSetColor(255, 255, 255);
 image.draw(0, 0);

 //Draw live unchanged video frame at right,
 //in a half of its size
 grabber.draw(image.width + 10, 0, 320, 240);
}

The custom, and the most interesting function of the example is synthesizeImage().
It creates synthesized image using grabber and video frames. The pixels of the
video frames are geometrically modulated by shifting along x axis, using red color
component of the pixels of the grabber frame:

void testApp::synthesizeImage(){

 //Initialize output pixels
 ofPixels pixels = grabber.getPixelsRef();

 //Get pixel arrays for grabber and video
 ofPixels &pixelsGrab = grabber.getPixelsRef();

Chapter 5

[135]

 ofPixels &pixelsVideo = video.getPixelsRef();

 //Get width and height for formulas shortening
 int w = pixelsGrab.getWidth();
 int h = pixelsGrab.getHeight();

 //We proceed only if video and grabbing frames
 //have equal sizes
 if (!(w == pixelsVideo.getWidth()
 && h == pixelsVideo.getHeight())) {
 return;
 }

 //Scan pixels
 for (int y=0; y<h; y++) {
 for (int x=0; x<w; x++) {
 //Get grabber color
 ofColor colorGrab = pixelsGrab.getColor(x, y);

 //Shift x-coordinate by red component
 int x1 = x + (colorGrab.r - 127);

 //Truncate x1 to bounds
 x1 = ofClamp(x1, 0, w-1);

 //Get color of pixel (x1, y) from video
 ofColor color = pixelsVideo.getColor(x1, y);

 //Set color to output pixel (x, y)
 pixels.setColor(x, y, color);
 }
 }
 //Update image pixels
 image.setFromPixels(pixels);
}

Working with Videos

[136]

Run the example. In the left part of the screen, you will see the result of fusion live
video with a prerecorded video. In the right part of the screen, you will see a small
picture along with a live video from the camera:

Let's continue the experiments, and direct camera straight on the left (transformed)
image on the screen. (If you have a laptop with embedded camera, you can use
mirror.) Screen-to-camera feedback loop will then occur. This nonlinear feedback
loop results in some organic morphing-like transformation of the prerecorded video.
You can rotate camera, move it closer or further, and explore the results. Actually,
now you are controlling the simple video synthesizer. The synthesizer's controller is
the webcam, which you are controlling by your hand. The example of its working is
shown in the following screenshot:

Chapter 5

[137]

Usually various color artifacts in the screen-to-camera chain are unwanted. But in
our situation we have the opposite. Artifacts are the source of interesting effects, like
the vivid ripples in output. See the example in the following screenshot:

Using image sequence
In the previous sections, we have considered how to work with videos stored in
video files or captured by cameras. Here we will consider working with the third
source of video – image sequences.

Sometimes using ofVideoPlayer for drawing movies is not appropriate. Two main
cases are:

• You need to render a big amount of movies on one screen simultaneously.
For example, in a 2D computer arcade game, there can be about 100 moving
characters and objects. You can play about 10 different video files in
openFrameworks simultaneously, but 100 is too much for it; so some other
solution is needed.

• You need to draw many layers of videos using alpha channel. But at
the time of writing this, openFrameworks does not support videos with
alpha channel within its standard class ofVideoPlayer. There is support
in openFrameworks for only Mac OS X, with class ofQTKitPlayer and
example examples/video/osxHighPerformanceVideoPlayerExample.
Also, there is an addon ofxAlphaVideoPlayer, but it is not included in the
openFrameworks distribution. So some universal solution for video with
alpha channel is desirable.

Working with Videos

[138]

The simplest solution for these cases is using image sequences. Image sequence is a
number of images located in the folder and numbered, such as:

image001.png
image002.png
…
image050.png

You can load the images into one array, and draw these one by one, creating a
full illusion of movie playing. For resolving the case of large number of videos,
you can load many image sequences and draw corresponding images on the screen.
For resolving the case of the alpha channel, you just should use images with the
alpha channel.

Using image sequences has several constrains:

• Reading images is a time-consuming operation, so for faster sequence
drawing, you should normally read a whole image sequence at
testApp::setup().

• The number of loaded images is limited by the size of the video memory of
your graphics card. If you have n images with width w and height h, colored
and with alpha channel, the sequence will occupy n * w * h * 4 bytes in the
memory. Note that you should use ofTexture for image sequence instead
of ofImage, in order to not occupy RAM.

You should never occupy all of your video memory, because some
amount of it is needed for usage by your operating system. If
you do so during your application execution, your computer can
suddenly go slow and even hang on, until you restart it.

Using image sequence example
Till now, there is no standard openFrameworks class for working with image
sequences. So we show here a simple example of working with one looped image
sequence. The following code loads images from a folder into an array, and then
draws these one by one. The index of the currently drawn image is computed using
the current time.

Chapter 5

[139]

Running this example, you will see a toy elephant movie with flying wool cloud.
Actually the cloud is an image sequence, drawn over a normal video:

The example is based on an emptyExample project in openFrameworks. Before
running it, copy the elephant.mov file and the woolCloudSeq folder into the
bin/data folder of your project.

This is example 05-Video/06-VideoImageSequence.

In the testApp.h file, inside the testApp class declaration, add declaration of video
player object backVideo and image sequence array seq, which is vector of textures:

//Video which will play as the background layer
ofVideoPlayer backVideo;

//Image sequence which will be overlaid on backVideo
vector<ofTexture> seq;

The setup() function in the testApp.cpp file loads and starts the backVideo movie
and reads contents of the data/woolCloudSeq folder into dynamic vector of images
seq. The update() function just loads frames of the backVideo movie:

void testApp::setup(){
 //Load background
 backVideo.loadMovie("elephant.mov");

Working with Videos

[140]

 backVideo.play();

 //Set the screen size equal to the backVideo dimensions
 ofSetWindowShape(backVideo.width, backVideo.height);

 //Read image sequence from the folder

 //1. Create object for reading folder contents
 ofDirectory dir;

 //2. Get the number of files in the folder data/woolCloudSeq
 int n = dir.listDir("woolCloudSeq");

 //3. Set the array size to n
 seq.resize(n);

 //4. Load images
 for (int i=0; i<n; i++) {
 //Getting i-th file name
 string fileName = dir.getPath(i);

 //Load i-th image
 ofLoadImage(seq[i], fileName);
 }
}

//--
void testApp::update(){
 backVideo.update(); //Decode the new frame if needed
}

In the preceding code, the list of images in the folder is obtained using ofDirectory
dir object. We get the number of files using the following function:

int n = dir.listDir("woolCloud");

Calling this function does not only return the amount of files, but also stores the list
of file names inside dir. After this, we can read all the file names using the function:

string fileName = dir.getPath(i);

Chapter 5

[141]

The image sequence is implemented here using vector<ofTexture> seq. Class
vector is C++ Standard Template Library container, holding items of any class.
It is very good for representing arrays with rare changed sizes. We resize the array
with the following function:

seq.resize(n);

Then fill each item, loading the corresponding image from the file:

ofLoadImage(seq[i], fileName);

The visual layering of the image sequence over the backVideo movie is made in the
draw() method as follows:

void testApp::draw(){
 //Draw background video
 ofSetColor(255, 255, 255);
 backVideo.draw(0,0);

 // Calculate sequence frame number i,
 //based on the current time

 //1. Get the number of seconds from application start
 float time = ofGetElapsedTimef();

 //2. Get the size of image sequence
 int n = seq.size();

 //3. Calculate the sequence duration
 //Our sequence will render 12 frames per second, so:
 float duration = n / 12.0;

 //4. Calculate looped playing position in sequence,
 //in range [0..duration]
 float pos = fmodf(time, duration);

 //5. Convert pos in the frame number
 int i = int(pos / duration * n);

 //Wool cloud will move, so calculate its position
 //depending on time
 float x = ofNoise(time * 0.5 + 10.0) * ofGetWidth();
 float y = ofNoise(time * 0.3 + 20.0) * ofGetHeight() / 4.0;

 //Enable alpha blending

Working with Videos

[142]

 ofEnableAlphaBlending();

 //Draw a sequence frame centered at (x,y)
 seq[i].setAnchorPercent(0.5, 0.5);
 seq[i].draw(x, y);
}

The most important thing here is computing the image sequence frame number
depending on the time. For calculating it, we use the fmod(a, b) function.

The fmod() function is a float analog of a % operation in C++. For
integer a and b, operation a % b returns residue of a divided by
b. fmodf(a, b) does the same, but for float a and b, and the
result is float too.
For example, calling fmodf(3.2, 1.0) will return 0.2.

In our case, fmodf(time, duration) returns the value in range [0, duration),
and after reaching the duration value, its result jumps back to 0, giving the
necessary looping effect.

Another thing to mention is how we make a cloud move across the screen.
To achieve this, we are changing cloud's drawing center coordinates (x, y) for
drawing depending on the time. That is, x and y are computed using values of
the smoothly changed ofNoise() function, which is a Perlin noise function. See
Appendix B, Perlin Noise, for details.

We use different shift values (10.0 and 20.0) in the function in order x and y
to change independently. Values 0.5 and 0.3 set the speed of changing x and y.
The ofNoise() function returns value in range [0, 1], so finally we multiply
the ofNoise results on ofGetWidth() and ofGetHeight() / 4.0 so that the
cloud flies in the high quarter of the screen:

float x = ofNoise(time * 0.5 + 10.0) * ofGetWidth();
float y = ofNoise(time * 0.3 + 20.0) * ofGetHeight() / 4.0;

Chapter 5

[143]

Summary
In this chapter, we learned how to work with three sources of video: video file, live
video grabbed from camera, and image sequence. We considered several examples of
processing video, including replacing colors and slit-scan effect. Also, we discovered
a simple video synthesizer, which uses screen-to-camera feedback loop to create
vivid effects on prerecorded video.

In the next chapter, we will explore how to work with sound, including playing
sound samples, capturing sounds from microphones, and transcoding sounds into
images and back.

Working with Sounds
Sounds are a necessary part of many interactive and entertainment projects. They
increase the level of immersion and add feedback to the interactions. Also, sounds
play a central role in sound art projects. In this chapter you will learn how to play
sound samples, synthesize new sounds, and get sounds from the microphone. Also,
you will learn how to get information from sound using its spectrum and use it for
controlling visualization parameters:

• Playing sound samples
• Generating sounds
• Using a microphone
• Getting spectral data from sound

Sound basics
From a physical point of view, sound is a wave of air density changing, which
propagates in the space from the sound source to our ears. In computers and other
digital devices, a sound is represented as an array of numbers which describe the
sound wave amplitude at discrete moments in time. These numbers are called digital
audio samples.

Digital sound representation using audio samples is called
Pulse Code Modulation (PCM). It is a historical term,
meaning that we code the amplitudes using digital numbers.

An array of audio samples with additional information such as its discretization time
step and number of channels (mono, stereo, and so on) is called a sound sample.
Sound samples can be used as the elementary bricks for construction of sound and
music. The most notable example is hip-hop music, which is based on samples.
Many computer games also use samples for sounding player actions.

Working with Sounds

[146]

openFrameworks has good capabilities for playing samples. So using samples
is a simple and straightforward way to add voices, effects, and the sound of real
instruments to your interactive project.

The most widely used sound sample file formats are MP3, WAV, and AIFF. The
WAV and AIFF formats store an uncompressed audio sample array with additional
information, and they are usable in all cases, especially when high-quality sounds
are needed.

MP3 is a format for playing music. It represents sound in a compressed form with
losing quality, so such files are not appropriate for further sound processing. Also
MP3 sounds consume more CPU memory on decoding data while playing. As
MP3 files are much more compact than WAV and AIFF, they are great for long
background sounds in your projects.

You can get many free and paid sound samples from the Web. Be careful about
considering the licensee limitations when using these. Anyway, the good option
is to record, synthesize, and process your own sounds, using sound recording and
editing software and software synths that are widely available for computers and
mobile devices.

Now we will consider how to use and play samples in openFrameworks. Low-level
sound generation and recording is considered later in the Generating sounds section.

Playing sound samples
The openFrameworks' ofSoundPlayer class is designed for playing and controlling
sound samples. The basic usage of the ofSoundPlayer sound object is the following:

• Loading a sound sample, specifying its filename using:
sound.loadSound(fileName);

• Playing the sample using:
sound.play();

• Updating the sound engine using the global function:
ofSoundUpdate();

You need to call the ofSoundUpdate(); function in testApp::update() for
all the samples to play correctly.

Chapter 6

[147]

There are a number of functions for controlling sample playback. They are as follows:

• The stop() function stops sample playing.
• The getIsPlaying() function returns true if our sample is currently playing.
• The setPaused(pause) function enables or disables pause in sample

playing, with pause of type bool.
• The setPosition(pos) function sets sample playing position, where

pos is a float value from 0.0 to 1.0. Here 0.0 means the start of the sample
and 1.0 means the end of the sample.

• The getPosition() function returns the current playing position as a float
value from 0.0 to 1.0.

• The setPositionMS(ms) function sets the sample playing position in
milliseconds, where ms has type int.

• The getPositionMS() function returns the int value with the current
sample playing position in milliseconds.

• The setLoop(looping) function enables or disables the sample loop mode
in which the sample repeats infinitely, looping has a type bool.

• The setMultiPlay(multi) function is a very important function. It
enables or disables the special mode for playing multiple copies of the sample
simultaneously. The multi attribute has a type bool. By default, this mode is
disabled, so if you start playing with sample.play(), wait some time and call
it again, then you will hear that the first sound has stopped and the second
sound has started. If you call setMultiPlay(true) before playing, then
you will hear two samples playing simultaneously.

If you enable the multiplay mode for the sample and play many
sounds by calling sample.play(), please note that you can
change the playing parameters of the last sound that started. So
you should call sample.play() and then change its parameters
before the next call of sample.play().

To stop all the playing samples, call the ofSoundStopAll() global function.

Working with Sounds

[148]

There are two functions for controlling the process of loading samples from files.
They are especially useful when your project uses many sample files:

• The isLoaded() function returns true if the sound is successfully loaded
and is ready to play.

• The unloadSound() function unloads a sample from the memory. This
function is useful for memory saving in mobile devices. On PCs, it is not so
crucial. Note that the loadSound() function unloads the previous loaded
sample automatically, so you will probably never use this function on a PC.

Until now, we learned how to play sound samples in an unchangeable way. But
when you play the sample several times, it will sound exactly the same and can be
boring, especially for short samples. One method for adding diversity in the output
sound is by loading many different samples and selecting them to play randomly.
Another great method is to use not as many samples, but to change its parameters
such as speed, volume, and stereo panorama:

• The setSpeed(speed) function sets the speed of sample playing.
Here speed has type float. If speed is equal to 1.0, the sample plays
unchangeable. Value 2.0 means the sample plays two times faster and
with doubled tone. Value -1.0 means the sample plays reversed.

• The setVolume(vol) function sets the volume of the sample, where vol is
a float value from 0.0 to 1.0.

• The setPan(pan) function sets stereo panorama position of the sample,
where pan is a float value from -1.0 (left) to 1.0 (right). The default value
is 0.0 (center).

• The getSpeed(), getVolume(), and getPan() functions return the current
value of the corresponding parameter of the sample.

The global function setSoundVolume(vol) changes the overall volume of all the
sounds playing. Note that it affects only the samples playing and has no effect on
sound generation (which is discussed in the Generating sounds section).

Let's consider an example of playing sound samples and changing their parameters
based on a simple physical model.

Chapter 6

[149]

The bouncing ball example
Consider a ball bouncing on the floor. Let the ball jump in the left or right direction
after each bounce and let's play a sound sample at each bounce, with the speed
(and hence a tone) of the sample depending on the ball position. Over time, some
random sequences of samples with different tones will be played. It is a piece of
computer-generated music, based on physical modeling.

This is example 06-Sound/01-BouncingBall.

The example is based on the emptyExample project in openFrameworks. Before
running it, copy the bounce.wav file into the bin/data folder of your project.

In the testApp.h file, in the class testApp declaration, add declarations of sound
samples and the ball moving function, after the #include "testApp.h" line:

ofSoundPlayer sound; //Sound sample
bool updateBall(); //Move ball function

Now let's consider the testApp.cpp file. For simplicity, we place the model
constants and variables not in the testApp class definition, but right into the
beginning of the .cpp file:

float mass = 0.007; //Mass of point
float g = 9.8; //Gravity force
float time0; //Time value, used for time step computing
ofPoint pos, vel; //Ball position and velocity

The setup() function does the sound sample loading and model initialization:

void testApp::setup(){
 //Set up sound sample
 sound.loadSound("bounce.wav"); //Load sound sample
 sound.setMultiPlay(true); //Set multiplay mode

 //Model setup
 time0 = ofGetElapsedTimef(); //Get current time
 pos = ofPoint(ofGetWidth() / 2, 100); //Ball's initial position
 vel = ofPoint(0, 0); //Initial velocity

 //Set up background to not clear each frame
 ofSetBackgroundAuto(false);
 ofBackground(255, 255, 255); //Clear background to white
}

Working with Sounds

[150]

Note that we use the ofSetBackgroundAuto(false) function calling, which
disables clearing of the screen at each testApp::draw() calling, so the drawing
will be accumulated on the screen (see details in the Drawing with an uncleared
background section in Chapter 2, Drawing in 2D).

The update() function moves the ball, and if bouncing occurs then the sample starts
to play. The important thing here is calling ofSoundUpdate() to update the sound
engine for each update() call, for the samples to play correctly:

void testApp::update(){
 //Update ball position and check if it is bounced
 bool bounced = updateBall();
 if (bounced) {
 //Start sample playing
 sound.play();
 //Set play speed, in dependence of x
 float speed = ofMap(pos.x, 0, ofGetWidth(), 0.2, 2);
 sound.setSpeed(speed);
 }
 //Update sound engine
 ofSoundUpdate();
}

The draw() function draws the floor line and the ball:

void testApp::draw(){
 float bottom = 300.0; //The floor position on the screen
 //Draw the floor line in black color
 ofSetColor(0, 0, 0);
 ofLine(0, bottom, ofGetWidth(), bottom);
 //Draw the ball in red color
 ofSetColor(255, 0, 0);
 ofFill();
 ofCircle(pos.x, bottom - pos.y, 3);
}

The last function to consider is updateBall(). It changes the position and the
velocity of the ball using the Euler method, according to Newton's second law of
motion, with gravitational force.

Chapter 6

[151]

Details on the Euler method can be seen in the Defining the particle
functions section in Chapter 3, Building a Simple Particle System. The
information on the second Newton's law of motion and gravity
force can be seen at http://en.wikipedia.org/wiki/
Newton's_laws_of_motion and http://en.wikipedia.
org/wiki/Gravitational_field.

When the ball bounces on the floor, it bounces in the y axis and changes its x velocity
randomly. When the ball jumps out of the screen, it appears on the opposite side of
the screen. The function returns true if the ball is bounced off the floor:

bool testApp::updateBall() {
 bool bounced = false;

 //Compute dt
 float time = ofGetElapsedTimef();
 float dt = ofClamp(time - time0, 0, 0.1);
 time0 = time;

 //Compute gravity force acceleration
 //using the second Newton's law
 ofPoint acc(0, -g/mass);

 //Change velocity and position using Euler's method
 vel += acc * dt;
 pos += vel * dt;

 //Check if the ball bounced off floor
 if (pos.y < 0) {
 //Elastic bounce with momentum conservation
 pos.y = -pos.y;
 vel.y = -vel.y;
 //Set random velocity by x axe in range [-300, 500]
 vel.x = ofRandom(-300, 500);
 bounced = true;
 }

 //Check if the ball is out of screen
 if (pos.x < 0) { pos.x += ofGetWidth(); }
 if (pos.x > ofGetWidth()) { pos.x -= ofGetWidth(); }
 return bounced;
}

Working with Sounds

[152]

The dt is a time step value, which is computed as a time difference between the
current time and the time of the previous calling of the updateBall() function.

We use the ofClamp() function for limiting its value by 0.1.
The reason for this is that sometimes time - time0 can be
a large value. (For example, if the user drags the window or
hides the application's window, testApp::update() callings
can be paused - it depends on the operating system.) So if we
don't limit this, formulas in the Euler method will work in an
unstable manner, and the model literally explodes.

Run the example. You will see a flying red dot which bounces of the line
(the floor) and also draws its trajectory on the screen. Each time the bouncing
occurs, you will hear a sound. Over time you will see the ball's path as shown
in the following screenshot:

Run the example a few more times. You will notice that the resulting trajectories
and the music differ. But the structure of the music will be the same. Actually it is
the structured randomness effect, which is typical for many creative coding and
generative art projects.

You can play with parameters such as mass, the y value of the ball's initial position
(100), the range of dependence of the sample speed of pos.x, range for random
velocity, and explore how model behavior and the music structure changes.

The singing voices example
There is a simple but fruitful method to make interesting and evolving sounds
with samples. It is based on playing several different samples simultaneously and
changing the parameters continuously inside testApp::update(). Let's consider
the simplest case of changing just the volumes of the samples. Namely, let's get a
number of vocal samples singing different notes, start playing them, and randomly
change the volume of each sample. The resulting sound will be like a live choir
singing a tonic chord.

Chapter 6

[153]

This is example 06-Sound/02-SingingVoices.

This example is based on the emptyExample project in openFrameworks.
Before running it, copy the files vox1.wav to vox6.wav into the bin/data
folder of your project.

For simplicity, we place all constants and variables not in the class testApp
definition, but right at the beginning of the testApp.cpp file, after the #include
"testApp.h" line:

const int N = 6; //Number of the samples
ofSoundPlayer sound[N]; //Array of the samples
float vol[N]; //Volumes of the samples

It is a best practice to use vector instead of fixed arrays
whenever it is possible. So it would be better to declare
sound and vol as follows:

vector<ofSoundPlayer> sound;

vector<float> vol;

Currently, such an approach does not work properly in
openFrameworks for Mac OS X—the project plays just one
sound due to an undesired interrelation between vector and
ofSoundPlayer.

The setup() function loads samples and sets up their parameters. Note how we place
the samples uniformly in stereo panorama ranging from -0.5 to 0.5 using setPan():

void testApp::setup(){

 //Load and set up the sound samples
 for (int i=0; i<N; i++) {
 sound[i].loadSound(
 "vox" + ofToString(i + 1) + ".wav");
 sound[i].setLoop(true);

 //Do some stereo panoraming of the sounds
 sound[i].setPan(ofMap(i, 0, N-1, -0.5, 0.5));

 sound[i].setVolume(0);
 sound[i].play(); //Start a sample to play
 }
 //Decrease overall volume to eliminate volume overload
 //(audio clipping)
 ofSoundSetVolume(0.2);
}

Working with Sounds

[154]

The update() function slowly changes the values of the vol array using Perlin noise
(see more details in Appendix B, Perlin Noise), and sets its values to the sample's volumes:

void testApp::update(){
 float time = ofGetElapsedTimef(); //Get current time

 //Update volumes
 float tx = time*0.1 + 50; //Value, smoothly changed over time
 for (int i=0; i<N; i++) {
 //Calculate the sample volume as 2D Perlin noise,
 //depending on tx and ty = i * 0.2
 float ty = i * 0.2;
 vol[i] = ofNoise(tx, ty); //Perlin noise

 sound[i].setVolume(vol[i]); //Set sample's volume
 }

 //Update sound engine
 ofSoundUpdate();
}

The first parameter for noise computation is as follows:

float nx = time*0.1 + 50;

It starts from 50 and increases by 0.1 for each second. These two constants set the
initial distribution and the speed of fluctuations.

The second parameter is as follows:

float ty = i * 0.2;

It is equally distributed from 0.0 to (N-1) * 0.2. Parameter 0.2 specifies the
smoothness of just the volumes distributed in the given time. Increasing this value
leads to smoothness decreasing.

The draw() function draws current volumes as narrow vertical rectangles:

void testApp::draw(){
 ofBackground(255, 255, 255); //Set the background color

 //Draw volumes as vertical lines
 ofSetColor(0, 0, 0);
 for (int i=0; i<N; i++) {
 ofRect(i * 20 + 100, 400, 5, -vol[i] * 300);
 }
}

Chapter 6

[155]

When you run this example, you will hear an evolving sound and see slow moving
lines which correspond to the current levels of each of the six playing samples:

Note that normally testApp::update() runs not more than 60 frames per second.
And changes of sound parameters at such a rate can be audible. So the described
technique of controlling volumes is very simple, but resulted changes in sound can
be not so smooth as it should be. To reach the perfect sound, you need to change the
parameters smoothly for each audio sample. See the example of such parameters
changing techniques in the The PWM synthesis example section.

Generating sounds
We saw earlier how to play sound samples and change their parameters. Though this
technique is simple and easy to begin with, it is not enough for making breakthrough
sound art projects. One way to achieve this is by generating and synthesizing sounds
and not using samples at all. Another way is to use samples as raw material for
processing methods such as morphing and granular synthesis. Both ways are based
on using low-level algorithms, which construct sounds as an array of audio samples
in real time.

openFrameworks uses low-level sound input and output, and we use C++ for
processing it, so our sound processing pipeline can perform almost any trick
with sounds, will work fast, and with only small lags.

Working with Sounds

[156]

There is one thing that is currently not so convenient to implement
with openFrameworks. This is processing a sound stream using
a variety of standard filters and effects. To do this, you need to
program filters yourself or use libraries or addons. Also, you can use
software such as Max/MSP or Ableton Live for sound generation
and then control it from openFrameworks via OSC protocol. See
Chapter 11, Networking for more details.

For generating sound in real time, you need to start the sound output stream and
then provide audio samples for the sound when it is requested by openFrameworks.
The corresponding additions to the project's code are as follows:

1. Add a sound stream object and function for audio output to the testApp
class declaration as follows:
ofSoundStream soundStream;

void audioOut(float *output, int bufferSize, int nChannels);

2. At the end of the testApp::setup() function definition add:
soundStream.setup(this, 2, 0, 44100, 512, 4);

Here this is a pointer to our testApp object which will receive
requests of audio data from openFrameworks by calling our
testApp::audioOut function.
Subsequently, 2 is the number of output channels (hence, stereo output), 0 is
the number of input channels (hence, no input), and 44100 is a sample rate,
that is, the number of audio samples played per second. The value 44100
means CD quality and is good in most situations. The last two parameters
512 and 4 are the size of the buffer for audio samples and the number of
buffers respectively. This is discussed later.

3. Add the function definition as follows:
void testApp::audioOut(
 float *output, int bufferSize, int nChannels){

 //... fill output array here

}

Chapter 6

[157]

This is the function that should fill the output array with the audio samples'
data. This function actually generates the sound. Values of output should lie
in the range from -1.0 to 1.0. In the opposite case, audio clipping will occur
(you will hear clicks in sound). The size of output is equal to bufferSize
* nChannels, and the samples in the channels are interleaved. Namely,
if nChannels is equal to 2, then this is a stereo signal, so output[0] and
output[1] mean the first audio samples for the left and the right channels.
Correspondingly, output[2] and output[3] mean the second audio
samples, and so on.

Also, there are a number of functions for managing audio devices. They are as follows:

• The soundStream.listDevices() function prints to console the list
of devices.

• The soundStream.setDeviceID(id) function selects a device, where
id has type int. You should call this before soundStream.setup(). If no
soundStream.setDeviceID(id) was called, then the default system
device is used.

• The soundStream.stop() function stops calling audioOut().
• The soundStream.start() function starts calling audioOut() again.
• The soundStream.close() function ends using audio device by

soundStream object.

There are two important things about the sound generating function audioOut().
Firstly, the function is called by openFrameworks independent of the update() and
draw() functions' calls. Namely, it is called at the request of the sound card, when
the next buffer with audio samples for playing is needed:

Working with Sounds

[158]

Secondly, audioOut() should work fast. In the opposite case, the sound card did not
receive the buffer in time, and you will hear clicks in the output sound. You can tune
this by changing the two last parameters in the following line:

soundStream.setup(this, 2, 0, 44100, 512, 4);

512 is a buffer size. If the buffer is bigger (for example, 1024), then it is rarely
requested, so you have more time for filling this, so more robustness. On the
contrary, a lower value of the buffer size, for example, 256, leads to the better
responsivity (smaller latency) of audio. The reason is that the delay between buffer
filling and its playing through the audio system will be smaller. The last parameter,
4, is the number of buffers used by the sound card for storing sound. Similarly,
increasing the parameter leads to better robustness and decreasing them leads to
better audio responsivity.

Now, we will consider an example of sound generation.

Warning
When using ofSoundStream for sound output in your projects,
be careful! Due to possible errors in the projects' code and for other
reasons, it can suddenly generate clicks and very loud sounds. To
avoid the hazard of damaging your ears, do not listen to the output
of such projects using headphones.

The PWM synthesis example
Let's build a simple sound generator using Pulse Width Modulation (PWM). In
electronics, PWM is a method of sending analog values through wires using just two
levels of voltage (logical 1 and 0). The value is coded by changing the length of the
pulse with logical value 1, with the overall cycle length fixed. In the following diagram,
coding val in range from 0 to 1, with fixed cycle length c is shown. You can see that an
output signal is a periodic wave, with the wavelength equal to c, and the wave consists
of two segments with values 1 and 0, with lengths val * c and c - val * c respectively:

Chapter 6

[159]

Such a signal can be considered as a sound wave, with the wave frequency equal
to 1.0 / c.

If val is equal to 0.5, then 1 and 0 values have equal length in the wave, and such a
waveform is called a square wave.

PWM sound waves and especially square waves are widely used in
subtractive synthesizers as the basic waveforms for sound generation.
They have a fat and distinct electronic sound. Among them, sinusoidal,
triangle, and saw-shaped waves are also used.

Let's consider an example of PWM sound generation. The frequency and PWM
value of the wave will depend on x and y mouse coordinates, so when you move the
mouse, you will hear the sound changing.

This is example 06-Sound/03-PWMSynth.
Warning: To avoid the hazard of damaging your ears due to the
possibility of suddenly generated very loud sounds, do not listen
to the output of the project with headphones.

Working with Sounds

[160]

This example is based on the emptyExample project in openFrameworks.

Add the next code to testApp.h, in the class testApp declaration. Note that the
sound control parameters are userFreq and userPwm— a frequency and PWM value.
And there are separate variables for these parameters freq and pwm which will
change relatively slowly. This lets us always obtain a smooth sound, even when the
user changes sound parameters fast (that is, moves the mouse rapidly).

//Function for generating audio
void audioOut(float *output, int bufferSize, int nChannels);

ofSoundStream soundStream; //Object for sound output setup

//User-changing parameters
float userFreq; //Frequency
float userPwm; //PWM value
//Parameters, used during synthesis
float freq; //Current frequency
float pwm; //Current PWM value
float phase; //Phase of the wave

//Buffer for rendering last generated audio buffer
vector<float> buf;

At the beginning of the testApp.cpp file, after the #include "testApp.h" line, add
declarations of some constants as follows:

int bufSize = 512; //Sound card buffer size
int sampleRate = 44100; //Sound sample rate
float volume = 0.1; //Output volume

The setup() function sets the initial values and starts the sound output:

void testApp::setup(){
 userFreq = 100.0; //Some initial frequency
 userPwm = 0.5; //Some initial PWM value

 freq = userFreq;
 pwm = userPwm;
 phase = 0;
 buf.resize(bufSize);

 //Start the sound output
 soundStream.setup(this, 2, 0, sampleRate, bufSize, 4);
}

Chapter 6

[161]

The update() function is empty, and the draw() function draws the buffer with
audio sample values on the screen:

void testApp::draw(){
 ofBackground(255, 255, 255); //Set the background color
 //Draw the buffer values
 ofSetColor(0, 0, 0);
 for (int i=0; i<bufSize-1; i++) {
 ofLine(i, 100 - buf[i]*50, (i+1), 100 - buf[i+1]*50);
 }
}

Also we need to fill the mouseMoved() function to change the parameters according to
the mouse move. The userFreq frequency will change in a range from 1 to 2000 Hz,
and the PWM value userPwm will change in a range from 0 to 1:

void testApp::mouseMoved(int x, int y){
 userFreq = ofMap(x, 0, ofGetWidth(), 1, 2000);
 userPwm = ofMap(y, 0, ofGetHeight(), 0, 1);
}

Finally, add the audioOut() function that generates the sound. You can see how
we change the freq and pwm values with each cycle loop to approach userFreq and
userPwm smoothly. Also note that phase is a value in a range from 0 to 1 and it changes
in correspondence with freq and sampleRate at each audio sample generation.

void testApp::audioOut(float *output,
 int bufferSize, int nChannels){
 //Fill output buffer,
 //and also move freq to userFreq and pwm to userPWM slowly
 for (int i=0; i<bufferSize; i++) {
 //freq smoothly reaches userFreq
 freq += (userFreq - freq) * 0.001;
 //pwm smoothly reaches userPwm
 pwm += (userPwm - pwm) * 0.001;

 //Change phase, and push it into [0, 1] range
 phase += freq / sampleRate;
 phase = fmodf(phase, 1.0);

 //Calculate the output audio sample value
 //Instead of 1 and 0 we use 1 and -1 output values
 //for the sound wave to be symmetrical along y-axe
 float v = (phase < pwm) ? 1.0 : -1.0;

 //Set the computed value to the left and the right

Working with Sounds

[162]

 //channels of output buffer,
 //also using global volume value defined above
 output[i*2] = output[i*2 + 1] = v * volume;

 //Set the value to buffer buf, used for rendering
 //on the screen
 //Note: bufferSize can occasionally differ from bufSize
 if (i < bufSize) {
 buf[i] = v;
 }
 }
}

Run the code and move the mouse left-right and up-down. You will hear a
distinctive PWM sound and will see its waves:

Move the mouse and explore the sound when the mouse is in the center of the screen
and in the screen borders. Because the x coordinate of the muse sets the frequency
and the y coordinate of the mouse sets the PWM value, you will notice that moving
the mouse in the middle of the screen gives a fat square sound, and moving the
mouse at the very top and bottom of the screen gives glitch-like pulse signals.

If you change the values 0.001 to 0.0001 in lines freq += (userFreq - freq
) * 0.001; and pwm += (userPwm - pwm) * 0.001; then freq and pwm will
slowly move to userFreq and userPwm. So while moving the mouse, you will hear a
glide effect used in synthesizers. On the contrary, if you set these values to 1.0, freq
and pwm will just be equal to userFreq and userPwm, and you will hear a raw sound,
rapidly changing with the mouse moving.

In some compilers, you need to perform the Rebuild command for
your project in order for the audioOut() function to be linked to
the project correctly. If the linking is not correct, you will just see
a straight line on the screen and hear nothing. If you see the PWM
waves on the screen but do not hear the sound, check your sound
equipment and its volume settings.

Chapter 6

[163]

You can extend the example by adding control to its parameters by using some
analysis of live video taken from the camera or 3D-camera data.

We will go further and see an example of transcoding image data into a sound
signal directly.

Image-to-sound transcoder example
Let's get an image and consider its center horizontal line. This is a one-dimensional
array of colors. Now get the brightness of each color in the array. We will obtain an
array of numbers, which can be considered as PCM values for some sound, and used
for playing in the audioOut() function.

Certainly, there exist other methods for converting visual data to audio
data and back. Moreover, there exist ways to convert audio and video
to commands, controlling robot motors, 3D printers, smell printers, and
any other digital devices. All such transformations between different
information types are called transcoding. Transcoding is possible due to
the digital nature of representation of all the information in the computer.
For example, number 102 can be simultaneously interpreted as a pixel
color component, an audio sample value and an angle for a robot's servo
motor. For detailed philosophical considerations on transcoding, see the
book The Language of New Media, Lev Manovich, The MIT Press.

Such an algorithm is a transcoding of image to audio data. Let's code it using frames
from a camera as input images. For details on using camera data, see Chapter 5,
Working with Videos.

This is example 06-Sound/04-ImageToSound.
Warning: To avoid the hazard of damaging your ears due to the
possibility of suddenly generated very loud sounds, do not listen
to the output of the project with headphones.

This example is based on the emptyExample project in openFrameworks. Add the
following code to testApp.h in the class testApp declaration:

//Function for generating audio
void audioOut(float *output, int bufferSize, int nChannels);

ofSoundStream soundStream; //Object for sound output setup

ofVideoGrabber grabber; //Video grabber

Working with Sounds

[164]

At the beginning of testApp.cpp, after the #include "testApp.h" line, add
constants and variables:

//Constants
const int grabW = 1024; //Width of the camera frame
const int grabH = 768; //Height of the camera frame
const int sampleRate = 44100; //Sample rate of sound
const float duration = 0.25; //Duration of the recorded
 //sound in seconds
const int N = duration * sampleRate; //Size of the PCM buffer
const float volume = 0.5; //Output sound volume
const int Y0 = grabH * 0.5; //y-position of the scan line

//Variables
vector<float> arr; //Temporary array of pixels brightness
vector<float> buffer; //PCM buffer of sound sample
int playPos = 0; //The current position of the buffer playing

The setup() function sets the buffer arrays' sizes, runs the video grabber, and starts
the sound output:

void testApp::setup(){
 //Set arrays sizes and fill these by zeros
 arr.resize(grabW, 0.0);
 buffer.resize(N, 0.0);

 //Start camera
 grabber.initGrabber(grabW, grabH);

 //Start the sound output
 soundStream.setup(this, 2, 0, sampleRate, 512, 4);
}

The update() function reads a frame from the camera and writes the brightness of
the central line into the buffer. It saves the pixel's brightness values into array arr,
which has a size equal to the image width grabW. Next, arr is stretching the buffer
array, which has size N, using linear interpolation.

Chapter 6

[165]

Also, the values of the buffer are shifted so the mean value of its values will be
equal to zero. Such a transformation is the simplest method for DC-offset removal.
Methods of DC-offset removal are always used in sound recording for centering
recorded signals. This is a crucial procedure in the case of mixing several sounds
because it helps to reduce a dynamic range of mixed signals without any changes
being heard:

void testApp::update(){
 grabber.update(); //Update camera
 if (grabber.isFrameNew()) { //Check for new frame

 //Get pixels of the camera image
 ofPixels &pixels = grabber.getPixelsRef();

 //Read central line's pixels brightness to arr
 for (int x=0; x<grabW; x++) {
 //Get the pixel brightness
 float v = pixels.getColor(x, Y0).getLightness();
 //v lies in [0,255], convert it to [-1,1]
 arr[x] = ofMap(v, 0, 255, -1, 1, true);
 }

 //Stretch arr to buffer, using linear interpolation
 for (int i=0; i<N; i++) {
 //Get position in range [0, grabW]
 float pos = float(i) * grabW / N;

 //Get left and right indices
 int pos0 = int(pos);
 int pos1 = min(pos0 + 1, N-1);

 //Interpolate
 buffer[i] = ofMap(pos, pos0, pos1,
 arr[pos0],arr[pos1]);
 }

 //DC-offset removal
 //Compute a mean value of buffer
 float mean = 0;
 for (int i=0; i<N; i++) {
 mean += buffer[i];
 }

Working with Sounds

[166]

 mean /= N;

 //Shift the buffer by mean value
 for (int i=0; i<N; i++) {
 buffer[i] -= mean;
 }
 }
}

The draw() function draws the camera image, marks the scan line area by a yellow
rectangle, and draws the buffer as a graph in the top part of the screen. See the
draw() function code in the example's text.

Finally, the audioOut() function reads the values from the buffer and pushes them
into the output array. The playing position is held in the playPos value. When the
end of the buffer is reached, the playPos is set to 0, so the buffer plays in a loop:

void testApp::audioOut(
 float *output, int bufferSize, int nChannels) {
 for (int i=0; i<bufferSize; i++) {
 //Push current audio sample value from buffer
 //into both channels of output.
 //Also global volume value is used
 output[2*i] = output[2*i + 1]
 = buffer[playPos] * volume;
 //Shift to the next audio sample
 playPos++;
 //When the end of buffer is reached, playPos sets to 0
 //So we hear looped sound
 playPos %= N;
 }
}

Run the example and direct the camera somewhere. You will see the camera image
with the scan area selected by a yellow rectangle. At the top of the screen, you will see
the corresponding graph of sound, and will hear this sound in a loop. Note how bright
and dark pixels in the scan line correspond to the high and low graph values. Most
likely, the sound you hear will be quite strange. This is because our ears are trained to
hear periodic signals but normally, data from a camera image is not periodic.

Chapter 6

[167]

Now, direct the camera to this stripes image (yes, direct the camera right to this
picture in the book, or print it on a paper from the file stripesSin0To880Hz.png):

If you fit the scan line to the horizontal line of the image, you will hear a
sound tone, swiping from a low to a high tone, and see the image as shown
in the following screenshot:

Working with Sounds

[168]

Actually, the stripes correspond to a sine wave with the frequency changed from 0
to 800 Hz, with a duration of one-fourth of a second. The corresponding graph of its
PCM is shown in the following screenshot:

You can see that the graph of the sound, transcoded from the camera (at the top of
the previous screenshot), is noised but nevertheless, is similar to the original graph.

Now move the camera closer to the stripes image. You will notice how the tone of
the sound decreases. If you move the camera very close, you will hear a bass sound.

Here is one more stripes image to play with. It codes ar sound (stripesAr.png file):

You can prepare stripe images by coding your own sounds using
the loop sampler example. This is discussed in The loop sampler
example section.

We hope that after you finish playing with this example you will understand and feel
the nature of a PCM-sound representation in a better way.

Now we will consider how to get sound data from a microphone and other input
sound devices.

Using a microphone
The way to input sound data from a microphone or other audio input device is
similar to the sound output considered earlier, with small changes:

1. Add a sound stream object and function for the audio input to the testApp
class declaration as follows:
ofSoundStream soundStream;

void audioReceived(float *input, int bufferSize, int nChannels);

Chapter 6

[169]

2. At the end of the testApp::setup() function definition, add the following:
soundStream.setup(this, 0, 1, 44100, 512, 4);

Here, this is a pointer to our testApp object which will receive the
microphone's sound data by calling our testApp::audioReceived function.
Subsequently, 0 is the number of output channels (hence, no output), 1 is the
number of input channels (hence, mono input), 44100 is a sample rate, that
is, the received number of audio samples per second.
The last two parameters 512 and 4 are the size of the buffer for audio
samples and the number of buffers.

3. Add function definition as follows:
void testApp::audioReceived(
 float *input, int bufferSize, int nChannels){

 //... use input array here

}

This is a function that can use the input array of the audio sample's data. It is
a function which actually processes sound.

Values of input lie in the range from -1.0 to 1.0. The size of the input is equal to
the bufferSize * nChannels, and samples in the channels are interleaved. Namely,
if nChannels = 2, then this is a stereo signal, so input[0] and input[1] mean the
first audio samples for the left and right channels. Correspondingly, input[2] and
input[3] mean the second audio samples, and so on.

Functions listDevices(), setDeviceID(id), stop(), start(), and close(),
discussed in the Generating sounds section are applicable here as well.

Note that the audioReceived() function is called by openFrameworks independent
of calling the update() and draw() functions. Namely, it is called when the next
buffer with audio samples is received from the sound card:

Working with Sounds

[170]

If you need both sound output and input, just specify the nonzero
number of the output and input channels:

soundStream.setup(this, 2, 1, 44100, 512, 4);

Add both audioOut() and audioReceived() functions to your
testApp class.

Let's see an example of using sound input.

The loop sampler example
Sound samplers are music devices which record and replay sound samples. Let's
make a simple sampler which records and plays one short sound. Recording and
playing are made in a loop. Additionally, the current sound is drawn as a graph
and also as a stripe image, so you can use it for making input pictures for an
image-to-sound transcoder example as described earlier.

This is example 06-Sound/05-LoopSampler.
Warning: To avoid the hazard of damaging your ears due to the
possibility of suddenly generated very loud sounds, do not listen
to the output of the project with headphones.

This example is based on the emptyExample project in openFrameworks. As
it receives and generates sound, add the next code to testApp.h in the class
testApp declaration:

//Function for receiving audio
void audioReceived(float *input, int bufferSize, int nChannels);

//Function for generating audio
void audioOut(float *input, int bufferSize, int nChannels);

//Object for sound output and input setup
ofSoundStream soundStream;

Chapter 6

[171]

At the beginning of testApp.cpp, after the #include "testApp.h" line, add
constants and variables. The main thing here is the buffer array, which is used
as storage for sound recording and also as a data source for sound playing. This
buffer has a size which is generally not equal to the size of the input and output
buffers passed in the audioReceived() and audioOut() functions. This means
we need to use variables for holding the current recording and playing position,
recPos and playPos respectively. Also, there are two modes of work selectable
from the keyboard, sample recording and playing.To manage this, we define the
flags recordingEnabled and playingEnabled:

//Constants
const int sampleRate = 44100; //Sample rate of sound
const float duration = 0.25; //Duration of the recorded
 //sound in seconds
const int N = duration * sampleRate; //Size of the PCM buffer

//Variables
vector<float> buffer; //PCM buffer of sound sample
int recPos = 0; //Current recording position in the buffer
int playPos = 0; //Current playing position in the buffer

int recordingEnabled = 1; //Is recording enabled
int playingEnabled = 0; //Is playing enabled

The setup() function sets the buffer size and starts the sound output and input:

void testApp::setup(){
 //Set buffer size and fill it by zeros
 buffer.resize(N, 0.0);

 //Start the sound output in stereo (2 channels)
 //and sound input in mono (1 channel)
 soundStream.setup(this, 2, 1, sampleRate, 256, 4);
}

In order to record sound updates on the screen more rapidly, we set
the sound card buffer size equal to 256 (not 512 as in the previous
examples). If you hear some clicks in the sound, it means that the
application is too expensive for your computer (due to CPU or
sound card), so increase the value back to 512.

Working with Sounds

[172]

The update() function is empty. The draw() function draws a graph of the buffer
and its stripe image. A stripe image is drawn by vertical lines of different colors.
Note that the width of the screen w = 1024 is less than the sound buffer size N, so we
are shrinking the buffer on the screen using the conversion formula:

i = float(x) * N / w

Also, while converting the buffer values into color values of the lines, we apply
square root transformation. It makes small changes of audio samples more visually
distinct. Image-to-sound transcoding works better with such a transformed image
too. See the draw() function code in the example's text.

The most important functions of the example are audioReceived() and
audioOut(). They record and play audio samples to and from the buffer array:

//Audio input
void testApp::audioReceived(
 float *input, int bufferSize, int nChannels) {

 //If recording is enabled by the user,
 //then store received data
 if (recordingEnabled) {
 for (int i=0; i<bufferSize; i++) {
 buffer[recPos] = input[i];
 recPos++;
 //When the end of buffer is reached, recPos sets
 //to 0, so we record sound in a loop
 recPos %= N;
 }
 }
}

//Audio output
void testApp::audioOut(
 float *output, int bufferSize, int nChannels) {

 //If playing is enabled by the user, then do output sound
 if (playingEnabled) {
 for (int i=0; i<bufferSize; i++) {
 output[2*i] = output[2*i+1]
 = buffer[playPos];
 playPos++;
 //When the end of buffer is reached, playPos sets
 //to 0, so we hear looped sound
 playPos %= N;
 }
 }
}

Chapter 6

[173]

Finally, add a reaction on the keyboard. Keys 1 and 2 will switch between the
recording and playing modes. Key S will save the screen image to the grab.png file,
so you can print it and use it as an input in the Image-to-sound transcoder example:

void testApp::keyPressed(int key){

 //Enable recording mode
 if (key == '1') {
 recordingEnabled = 1; playingEnabled = 0;
 }

 //Enable playing mode
 if (key == '2') {
 recordingEnabled = 0; playingEnabled = 1;
 }

 //Save screen image to the file
 if (key == 's') {
 ofImage grab;
 grab.grabScreen(0, 0, ofGetWidth(), ofGetHeight());
 grab.saveImage("grab.png");
 }
}

If you use a laptop, then it is highly possible that you may have an built-in
microphone. If not, then before running the application, connect a microphone or
web camera to your computer (most web cameras have microphones). Run the
application and say something into the microphone. You will see a graph of the
sound and also a stripe image as shown in the following screenshot:

Working with Sounds

[174]

Continue talking into the microphone and press 2. The recording will be stopped and
the last recorded sound sample will play in a loop. As the recording is performed in
a looped buffer with a length duration = 0.25 seconds, the resulting duration of the
sample will be 0.25 seconds too.

Now press S and the image will be saved into the grab.png file in the bin/data
folder of the application. Press 1 and the recording will start again.

If your application hangs at the start, you might have selected
an improper sound device. For example, it can happen if you run
the application in Microsoft Windows 7 and no input device is
connected. Also, some sound devices are output or input only.
Use soundStream.listDevices() to show the list of available
devices, and then call soundStream.setDeviceID(id) with
proper id. If you use an input-only device, try to run the example
with sound output disabled. To do so, change the number of output
channels from 2 to 0 in soundStream.setup() calling in the
testApp::setup() function:

soundStream.setup(this, 0, 1, sampleRate, 256, 4);

Saving a recorded sample to the file
Let's talk about saving the recorded sound sample into a file. Currently,
openFrameworks does not have a function for writing sound samples to WAV or
MP3 files. To do so, you need to download and use an addon such as ofxSndFile.

Another simple but not so comfortable way is to save your file as a RAW file
containing only audio samples, and then open it in an audio editor, specifying its
sample rate and audio samples' type. To do so in the preceding example, add the
following code to the keyPressed(int key) function:

//Write the sound sample to raw-file
if (key == 'f') {
 //Create a file for writing
 //Here "wb" means that we open binary file for writing
 FILE *file = fopen(ofToDataPath("sound.raw").c_str(), "wb");
 //Write the buffer into file
 fwrite(&buffer[0], N, sizeof(buffer[0]), file);

 //Close the file
 fclose(file);
}

Chapter 6

[175]

Now if you run the application and press F, the current sound sample will be written
to the sound.raw file in the bin/data folder of the application. You can open it in a
sound editor such as Audacity (free) or Sony Sound Forge (commercial) and while
opening, specify the sample parameters:

• Sample rate: 44100 Hz
• Sample type or encoding: 32-bit float
• Channels: 1 channel (mono)
• Byte order: Little-endian

Finally, using the editor, you can save it as a WAV or an MP3 file.

Now we will consider how to get meaningful information from sound and use it for
adding a real-time reaction to sound into your projects.

Getting spectral data from sound
PCM sound representation is good for sound storage and playing. It lets us
operate sound samples like a piece of magnetic tape—to cut, shuffle its parts,
reverse, and glue back together. Also it lets us change and measure the overall
volume of the sound. But PCM is inadequate for more advanced sound analysis
and processing. The reason being that humans cannot hear separate audio samples,
only frequencies in sound in short time intervals. The collection of amplitudes of
each frequency in a short time interval is called spectrum of the sound. Therefore,
sound processing methods should work using frequencies-spectrum language. This
differs sound processing from image and video processing as they work well with
pixels independently.

In this section, we will not dip into the mathematical aspects of spectrum
computing, but will learn how to compute it using the openFrameworks
functions and use it in projects.

The spectrum in openFrameworks is calculated for sound, which is formed by
playing samples using the ofSoundPlayer objects.

If you need to calculate the spectrum for your own generated
audio with the audioOut() function, you need to do it by
yourself, with Fast Fourier Transform implementation, which
you can find on the Internet.

Working with Sounds

[176]

The spectrum is an array of float numbers. It is obtained using the
ofSoundGetSpectrum(N) function, where N is the number of spectrum bands.
Normally, N is the power of two:

float *val = ofSoundGetSpectrum(256);

Here val is an array of size 256. First array items correspond to lower frequencies,
and last array items correspond to higher frequencies. With increasing N, you will
have a more detailed description of the spectrum, but the data accuracy in time will
decrease. The values of the spectrum are normalized so you can think they lie in the
range [0, 1], though for loud sounds, values can exceed 1.

Note that you should not release the memory of val,
because it is managed by a sound engine.

Having a spectrum array, you can get its values and use these for changing the
controlling parameters for physics and visualization in your project. It is a good idea
to smooth the spectrum because it jitters. Also, when using it for crucial projects, you
do not need to use one spectrum band but perform smoothing (filtration) spectrum
values over a number of bands.

The technology of filtering the regions of a spectrum is widely used in the VJ
software for detecting a track's BPM (beats per minute, or tempo), and tracking
separate beats of drums and other instruments. If you need to do a really advanced
sound analysis of the music track for visualization, it may be a good idea to use
Max/MSP, VDMX, or any other VJ software for analysis, and then send its result to
your openFrameworks project via the OSC protocol. For more details on using the
OSC protocol, see Chapter 11, Networking.

Dancing cloud example
This is an example of an audio-reactive visual project. We are going to play a music
track, get its spectrum, and use it for controlling point cloud parameters. So the cloud
is rendered on the screen and shakes synchronously with drum beats in the music.

This is example 06-Sound/06-DancingCloud.

The example is based on the emptyExample project in openFrameworks. Before
running it, copy the surface.wav file into the bin/data folder of your project.

Chapter 6

[177]

In the testApp.h file, in the class testApp declaration, add declarations of a
sound sample:

 ofSoundPlayer sound; //Sound sample

Now let's consider the testApp.cpp file. For simplicity, we place the constants
and variables not in class testApp definition, but right into the cpp file, after the
#include "testApp.h" line:

const int N = 256; //Number of bands in spectrum
float spectrum[N]; //Smoothed spectrum values
float Rad = 500; //Cloud radius parameter
float Vel = 0.1; //Cloud points velocity parameter
int bandRad = 2; //Band index in spectrum, affecting Rad value
int bandVel = 100; //Band index in spectrum, affecting Vel value

const int n = 300; //Number of cloud points

//Offsets for Perlin noise calculation for points
float tx[n], ty[n];
ofPoint p[n]; //Cloud's points positions

float time0 = 0; //Time value, used for dt computing

You can see that the spectrum is stored in the spectrum array, with size N = 256.
Cloud has two control parameters—radius Rad and velocity Vel. Radius depends on
the spectrum band bandRad = 2, and velocity depends on spectrum band bandVel
= 100. These bands were selected specifically for the given music track, so Rad and
Vel jump up on the base drum and snare drum beats respectively. Visually, the
cloud expands on the base drum beat, and the points in the cloud begin to shuffle
on the snare drum beat. The cloud is made from array points p, with size n = 300.
Points are moved by Perlin noise (see more details in Appendix B, Perlin Noise).

The setup() function does sound sample loading and sets Perlin noise offsets for
points initialization:

void testApp::setup(){
 //Set up sound sample
 sound.loadSound("surface.wav");
 sound.setLoop(true);
 sound.play();

 //Set spectrum values to 0
 for (int i=0; i<N; i++) {
 spectrum[i] = 0.0f;

Working with Sounds

[178]

 }

 //Initialize points offsets by random numbers
 for (int j=0; j<n; j++) {
 tx[j] = ofRandom(0, 1000);
 ty[j] = ofRandom(0, 1000);
 }
}

The update() function gets the spectrum of the currently played sound, computes
its smoothed values to the spectrum array, and recalculates the Rad and Vel
parameters. Finally, it calculates new point positions:

void testApp::update(){
 //Update sound engine
 ofSoundUpdate();

 //Get current spectrum with N bands
 float *val = ofSoundGetSpectrum(N);
 //We should not release memory of val,
 //because it is managed by sound engine

 //Update our smoothed spectrum,
 //by slowly decreasing its values and getting maximum with val
 //So we will have slowly falling peaks in spectrum
 for (int i=0; i<N; i++) {
 spectrum[i] *= 0.97; //Slow decreasing
 spectrum[i] = max(spectrum[i], val[i]);
 }

 //Update particles using spectrum values

 //Computing dt as a time between the last
 //and the current calling of update()
 float time = ofGetElapsedTimef();
 float dt = time - time0;
 dt = ofClamp(dt, 0.0, 0.1);
 time0 = time; //Store the current time

 //Update Rad and Vel from spectrum
 //Note, the parameters in ofMap's were tuned for best result
 //just for current music track
 Rad = ofMap(spectrum[bandRad], 1, 3, 400, 800, true);

Chapter 6

[179]

 Vel = ofMap(spectrum[bandVel], 0, 0.1, 0.05, 0.5);

 //Update particles positions
 for (int j=0; j<n; j++) {
 tx[j] += Vel * dt; //move offset
 ty[j] += Vel * dt; //move offset
 //Calculate Perlin's noise in [-1, 1] and
 //multiply on Rad
 p[j].x = ofSignedNoise(tx[j]) * Rad;
 p[j].y = ofSignedNoise(ty[j]) * Rad;
 }
}

The draw() function draws a spectrum and the cloud. Cloud's points are rendered as
small circles. Additionally, pairs of points with distance less than the threshold dist
= 40 are joined by a line segment:

void testApp::draw(){
 ofBackground(255, 255, 255); //Set up the background

 //Draw background rect for spectrum
 ofSetColor(230, 230, 230);
 ofFill();
 ofRect(10, 700, N * 6, -100);

 //Draw spectrum
 ofSetColor(0, 0, 0);
 for (int i=0; i<N; i++) {
 //Draw bandRad and bandVel by black color,
 //and other by gray color
 if (i == bandRad || i == bandVel) {
 ofSetColor(0, 0, 0); //Black color
 } else {
 ofSetColor(128, 128, 128); //Gray color
 }
 ofRect(10 + i * 5, 700, 3, -spectrum[i] * 100);
 }

 //Draw cloud

 //Move center of coordinate system to the screen center
 ofPushMatrix();

Working with Sounds

[180]

 ofTranslate(ofGetWidth() / 2, ofGetHeight() / 2);

 //Draw cloud's points
 ofSetColor(0, 0, 0);
 ofFill();
 for (int i=0; i<n; i++) {
 ofCircle(p[i], 2);
 }

 //Draw lines between near points
 float dist = 40; //Threshold parameter of distance
 for (int j=0; j<n; j++) {
 for (int k=j+1; k<n; k++) {
 if (ofDist(p[j].x, p[j].y, p[k].x, p[k].y)
 < dist) {
 ofLine(p[j], p[k]);
 }
 }
 }

 //Restore coordinate system
 ofPopMatrix();
}

When running this example, you will hear a music track and will see the moving
point cloud in the center of the screen. At the bottom of the screen, you will see the
sound spectrum:

Chapter 6

[181]

You can see that spectrum bands bandRad = 2 and bandVel = 100 are drawn in
black (numeration from 0). Note that band 2 jumps on the base drum beat, and band
100 jumps on the snare drum beat, but in a lesser range, and the cloud extends and
shuffles in correspondence to these beats.

You can extend the example by associating the radius and color of the point's circles
with some spectrum bands.

Summary
In this chapter, we learned how to load, play, and control sound samples
and considered two generative music examples. Also, we studied low-level
sound input and output, and explored this using examples of PWM synthesis
and image-to-sound and sound-to-image transcoding examples. Finally, we
talked about sound spectrum notion and built a audio-reactive visual project
with a point cloud moving according to the music track.

In the next chapter, we will learn how to draw 3D objects using openFrameworks.

Drawing in 3D
3D graphics often looks more impressive than 2D graphics because 3D has unique
expressive capabilities, such as depth, perspective, and shading. Also, the third
dimension allows objects to interweave and twist in the space in ways that are hard
to achieve using 2D graphics. In this chapter we will cover the basics of rendering
and animating 3D surfaces and primitive clouds with openFrameworks. We'll cover
the following topics:

• Simple 3D drawing
• Using ofMesh
• Enabling lighting and setting normals
• Texturing
• Working with vertices

3D basics
Working with 3D means working with objects modeled in the three-dimensional
scene, where the dimensions are horizontal (x), vertical (y), and depth (z). The
resulting 3D scene is projected either onto a 2D image to show it on the screen,
two 2D images for stereoscreen, or even printed as a 3D object using a 3D printer.

Drawing in 3D

[184]

Representation of 3D objects
Each 3D object is represented using a number of elementary primitives such
as points, line segments, triangles, or other polygons. Methods of the object's
representation are as follows:

• An object is a number of surfaces assembled from polygonal primitives such
as triangles and quadrangles (often called quads). This method is used in
3D-modeling software for representing "surface" objects, such as a human
body, a car, a building, and also clothes and a rippled water surface.

• An object is a number of curves assembled from line segments. Such a
representation is used for modeling hair and fur.

• An object is a huge number of small points called particles. This is
representation of objects without distinct shape: smoke, clouds, fire,
and a waterfall (see Chapter 3, Building a Simple Particle System).

These methods refer to realistic representation of real-world objects. We are interested
in experimental 3D, so we can play with representations freely. For example:

• Triangles can be used to draw some clouds made from triangles but not
smooth surfaces

• Thousands of long curves can interweave inside a volume with specified
bounds, creating an evolving "hairy" 3D object

• Particles can represent a rigid 3D object that suddenly changes its shape in a
complex way

In openFrameworks, you can represent and draw 3D objects by yourself; see the Simple
3D drawing section. But normally it is preferable to use a powerful ofMesh class, which
lets you represent and draw surfaces, curves, particles, and distinct primitives at the
fastest speed; see the Using ofMesh section. Also you can manipulate the static and
animated 3D models stored in files such as 3DS; see the Additional topics section.

3D scene rendering
In this chapter we will consider rendering a 3D scene on a 2D screen (and will not
consider stereoscreens and 3D printers).

Recall that, when we draw a flat 2D scene, we just imprint objects such as images
and curves onto the screen at the specified coordinates. And the order of the object's
drawing defines its visibility; the last object is visible as a whole and can occlude the
objects drawn before it.

Chapter 7

[185]

The rendering of a 3D scene differs from the case of a 2D scene because the object's
visibility here is defined by its z coordinate (depth). By default, in openFrameworks,
points with a zero value for the z coordinate forms an xy plane, which is used for 2D
drawing. Increasing and decreasing the value of the z coordinate leads to moving the
objects closer or farther correspondingly.

openFrameworks graphics is based on Open Graphics Library (OpenGL), which
renders objects using z-buffering technology. This technology just stores z values
for each screen pixel in a special buffer, called z-buffer (or depth buffer). During
rendering, if the z value of the object's pixel is greater than the z value in the buffer,
the pixel is rendered and the z-buffer is updated to this value. Otherwise, the object's
pixel is not rendered.

By default, the z-buffering is disabled. To enable it, call the following function:

ofEnableDepthTest();

When enabled, the z-buffer clears automatically at each frame, together with the
background drawing (if you do not call ofSetBackgroundAuto(false)). To
disable z-buffering, use the ofDisableDepthTest() function.

There is another 3D rendering technology, called ray tracing. Instead of
directly projecting the pixels of primitive onto the screen, it simulates
light ray propagation from the light sources to the camera. Such a
method is a natural way to construct shadows and other natural-world
lighting effects. It is used for the highest quality 3D graphics and is
available in 3D animation software. But its real-time implementations
are currently very resource intensive, and we do not consider them here.

The volumetric nature of the 3D objects introduces new attributes into the 3D
scene. These are lights, the object's materials interacting with lights, the 3D scene
perspective, and virtual cameras. See the Enabling lighting and setting normals and
Additional topics sections for more information.

Note, the modern approach in 3D that includes advanced lighting and shading,
object's shape manipulation, and the rendered scene postprocessing requires using
shaders; see Chapter 8, Using Shaders, for further details.

Drawing in 3D

[186]

openFrameworks is a thin wrapper over OpenGL, so it
provides low-level functionality, which is great for working
with custom-generated 3D graphics. However, if you need
to work with 3D worlds consisting of many life-like models
and characters, it is probably better to use some other 3D
engine, such as Unity 3D. We use Unity 3D for complex 3D
world rendering and add interactivity by controlling it from
openFrameworks' project, which processes sensors such as
depth cameras. openFrameworks and Unity 3D are connected
via OSC network protocol; see Chapter 11, Networking.

Now we will consider a simple 3D drawing example with openFrameworks.

Simple 3D drawing
For simple 3D drawing in openFrameworks, follow these steps:

1. Add the ofEnableDepthTest() function call in the beginning of the
testApp::draw() function to enable z-buffering. If you omit it, all the
graphics objects will be rendered without respect to their z coordinate
in correspondence with the graphical primitives' rendering order.

2. Draw primitives as follows:
 ° The ofLine(x1, y1, z1, x2, y2, z2) function draws a

line segment between points (x1, y1, z1) and (x2, y2, z2). There
is an overloaded version of the function, ofLine(p1, p2),
where p1 and p2 have type ofPoint. Use the ofSetColor() and
ofSetLineWidth() functions to adjust its rendering properties of
color and line width.

In Chapter 2, Drawing in 2D, we used the ofPoint class to
represent 2D points using its fields x and y. Actually, ofPoint
has a third field z, which, by default, is equal to zero. So ofPoint
can represent points in 3D. Just declare ofPoint p and work
with values p.x, p.y, and p.z.

 ° The ofTriangle(p1, p2, p3) function draws a triangle with
vertices in points p1, p2, and p3. Use the ofSetColor(), ofFill(),
ofSetLineWidth(), and ofNoFill() functions to adjust its
rendering properties.

Chapter 7

[187]

 ° The ofRect(x, y, z, w, h) function draws a rectangle with the
top-left corner at (x, y, z) and the width w and height h, oriented
parallel to the screen plane. If you need to get a rotated rectangle, you
need to rotate the coordinate system using the ofRotate() function.

To draw arbitrary polygons—for example, quadrangles—use the
following method:
ofBeginShape(); //Begin shape
ofVertex(x1, y1, z1); //The first vertex
ofVertex(x2, y2, z2); //The second vertex
//...
ofVertex(xn, yn, zn); //The last vertex
ofEndShape(); //End shape

If ofFill() was called before drawing, the shape will be drawn filled and
closed. If ofNoFill() was called before drawing, just an unclosed polygon
will be drawn.

3. Translate, scale, and rotate the rendered objects by manipulating the
coordinate system:

 ° The ofTranslate(x, y, z) function translates the coordinate
system by vector (x, y, z)

 ° The ofScale(x, y, z) function scales the coordinate system by
factors (x, y, z)

 ° The ofRotate(angle, x, y, z) function rotates the coordinate
system along vector (x, y, z) by angle degrees

As in a 2D case, use ofPushMatrix() and ofPopMatrix() to store and retrieve the
current coordinate system in a matrix stack.

Now we will illustrate these steps in an example.

The triangles cloud example
Let's draw 1500 random triangles, located at an equal distance from the center of the
coordinates. This will look like a triangle cloud in the shape of a sphere. To make the
visualization more interesting, colorize the triangles with random colors from black
to red and add constant rotation to the cloud.

This is example 07-3D/01-TrianglesCloud.

Drawing in 3D

[188]

The example is based on the emptyExample project in openFrameworks. In the
testApp.h file, inside the testApp class declaration, add arrays vertices and
colors to hold the vertices and the colors of the triangles and variables nTri and
nVert corresponding to the number of triangles and their vertices:

vector<ofPoint> vertices;
vector<ofColor> colors;
int nTri; //The number of triangles
int nVert; //The number of the vertices equals nTri * 3

The setup() function fills the arrays for the triangles' vertices and colors. The
vertices of the first triangle are stored in vertices[0], vertices[1], and
vertices[2]. The vertices of the second triangle are stored in vertices[3],
vertices[4], vertices[5], and so on. In general, the vertices of the triangle with
index i (where i is in range from 0 to N-1) are stored in the vertices with the indices
i * 3, i * 3 + 1, and i * 3 + 2.

void testApp::setup() {
 nTri = 1500; //The number of the triangles
 nVert= nTri * 3; //The number of the vertices

 float Rad = 250; //The sphere's radius
 float rad = 25; //Maximal triangle's "radius"
 //(formally, it's the maximal coordinates'
 //deviation from the triangle's center)

 //Fill the vertices array
 vertices.resize(nVert); //Set the array size
 for (int i=0; i<nTri; i++) { //Scan all the triangles
 //Generate the center of the triangle
 //as a random point on the sphere

 //Take the random point from
 //cube [-1,1]x[-1,1]x[-1,1]
 ofPoint center(ofRandom(-1, 1),
 ofRandom(-1, 1),
 ofRandom(-1, 1));
 center.normalize(); //Normalize vector's length to 1
 center *= Rad; //Now the center vector has
 //length Rad

 //Generate the triangle's vertices
 //as the center plus random point from
 //[-rad, rad]x[-rad, rad]x[-rad, rad]
 for (int j=0; j<3; j++) {
 vertices[i*3 + j] =

Chapter 7

[189]

 center + ofPoint(ofRandom(-rad, rad),
 ofRandom(-rad, rad),
 ofRandom(-rad, rad));
 }
 }

 //Fill the array of triangles' colors
 colors.resize(nTri);
 for (int i=0; i<nTri; i++) {
 //Take a random color from black to red
 colors[i] = ofColor(ofRandom(0, 255), 0, 0);
 }
}

The update() function is empty here, and the draw() function enables z-buffering,
which rotates the coordinate system based on time, and draws the triangles with the
specified colors.

void testApp::draw(){
 ofEnableDepthTest(); //Enable z-buffering

 //Set a gradient background from white to gray
 //for adding an illusion of visual depth to the scene
 ofBackgroundGradient(ofColor(255), ofColor(128));

 ofPushMatrix(); //Store the coordinate system

 //Move the coordinate center to screen's center
 ofTranslate(ofGetWidth()/2, ofGetHeight()/2, 0);

 //Calculate the rotation angle
 float time = ofGetElapsedTimef(); //Get time in seconds
 float angle = time * 10; //Compute angle. We rotate at speed
 //10 degrees per second
 ofRotate(angle, 0, 1, 0); //Rotate the coordinate system
 //along y-axe
 //Draw the triangles
 for (int i=0; i<nTri; i++) {
 ofSetColor(colors[i]); //Set color
 ofTriangle(vertices[i*3],
 vertices[i*3 + 1],
 vertices[i*3 + 2]); //Draw triangle
 }

 ofPopMatrix(); //Restore the coordinate system
}

Drawing in 3D

[190]

Run the code and you will see a sphere-like rotating cloud of triangles as shown in
the following screenshot:

To draw the background, we use the ofBackgroundGradient(color1, color2,
type) function. It creates the gradient filling of type type for the entire application's
screen, with colors interpolated from color1 to color2. The possible values of type
are as follows:

• OF_GRADIENT_CIRCULAR – This type gives a circular color gradient with the
center being the center of screen. This is the default value.

• OF_GRADIENT_LINEAR – This type gives you a top-to-bottom gradient.
• OF_GRADIENT_BAR – This type gives you a center-to-top and a

center-to-bottom gradient.

Note that each triangle moves and rotates on the screen but its color always remains
unchanged. The reason for this is that we don't use light and normals, which control
how a graphics primitive is lit and shaded.

Chapter 7

[191]

The simplest way to add lighting and normals is using the ofMesh class, which we
will consider now.

Using ofMesh
The ofMesh class is a powerful class that is used for representing, modifying, and
rendering 3D objects. By default, it draws triangle meshes, but it can also be used
for drawing curves and points.

The ofMesh class performs rendering of many thousands and even millions of
triangles by one OpenGL call, at the highest possible speed. Even though using
ofMesh will at first seem slightly more complicated than using ofTriangle(),
it will give you more flexibility in creating and modifying 3D objects in return.
So it is highly recommended that you use ofMesh for 3D in all cases, except the
very beginning or for learning 3D. You can use ofMesh not only for 3D but for
2D graphics as well.

openFrameworks has one more class, named ofVBOMesh, that is used
for working with meshes. The class name means "mesh based on Vertex
Buffer Object (VBO)". This class is similar to ofMesh, but it renders
significantly faster when the vertices of the mesh are not changing. See
details of its usage and performance in comparison with ofMesh in
openFrameworks example examples/gl/vboExample.

To draw a surface consisting of a number of triangles, follow these steps:

This is example 07-3D/02-PyramidMesh. It is based on
the emptyExample project in openFrameworks.

1. Declare an object mesh of type ofMesh in the testApp class declaration:
ofMesh mesh;

2. Add the vertices of the surface triangles to the mesh using the mesh.
addVertex(p) function. Note that if a vertex belongs to several triangles,
you should specify these vertices just once. This feature is very useful for
changing the surface; you change the position of just one vertex, and all the
triangles will be drawn correctly.

Drawing in 3D

[192]

Vertices are added to the end of a special array of vertices in the mesh and
are later referenced by indices in this array. So the first vertex has the index
0, the second vertex has the index 1, and so on. For example, to draw a
pyramid, we specify its four vertices as follows:
//Pyramid's base vertices with indices 0, 1, 2
mesh.addVertex(ofPoint(-200, -100, -50));
mesh.addVertex(ofPoint(200, -100, -50));
mesh.addVertex(ofPoint(0, 200, 0));

//Pyramid's top vertex with index 3
mesh.addVertex(ofPoint(0, 0, 50));

3. Add the triangles by specifying the indices of the vertices for each triangle
using the mesh.addTriangle(index1, index2, index3) function. Be
careful to order this in the clockwise direction for correct lighting. In our
pyramid example, we specify just three of its four triangles, so that you can
see the interior of the object.
//Vertices with indices 3, 2, 0
mesh.addTriangle(3, 2, 0);

//Vertices with indices 3, 1, 2
mesh.addTriangle(3, 1, 2);

//Vertices with indices 3, 0, 1
mesh.addTriangle(3, 0, 1);

4. Draw a mesh in the testApp::draw() function using the mesh.draw()
function. You may need coordinate system transformations for moving and
rotating the object. For example, a rotating pyramid can be drawn with the
following code in testApp::draw():
ofEnableDepthTest(); //Enable z-buffering

//Set a background
ofBackgroundGradient(ofColor(255), ofColor(128));

ofPushMatrix(); //Store the coordinate system

//Move coordinate center to screen's center
ofTranslate(ofGetWidth()/2, ofGetHeight()/2, 0);

//Rotate the coordinate system
float time = ofGetElapsedTimef(); //Get time in seconds
float angle = time * 30; //Rotate angle

Chapter 7

[193]

ofRotate(angle, 0, 1, 1);

ofSetColor(0, 128, 0); //Set a dark green color
mesh.draw(); //Draw the mesh

ofPopMatrix(); //Restore the coordinate system

When you run this code, you will see the pyramid is uniformly colored a dark green
color. It looks like some animated 2D polygon and it is hard to make out that this
is really a 3D pyramid surface. To see the mesh as a 3D object, you need to enable
lighting for the scene and add normals information to the mesh. Let's do it.

Enabling lighting and setting normals
Lighting is needed for different parts of the surface to have different shading,
depending on their orientation to the viewer. Such shading makes the surfaces
look much more interesting than if just rendered with a uniform color because it
emphasizes the 3D curvature of the surfaces. openFrameworks has an ofLight class
for controlling light sources.

This is example 07-3D/03-PyramidLighting. This example
is a good starting point for drawing smooth surfaces using the
setNormals() function.
It is a continuation of example 07-3D/02-PyramidMesh.

To use one light source with default parameters, add the following line in the
testApp class declaration:

ofLight light;

Add the following line in the testApp::setup() function to enable it:

light.enable(); //Enabling light source

For the light to interact with the mesh properly, you need to set up normal vectors
for all the vertices using the mesh.addNormal(normal) function. Each normal
vector should have unit length and direction perpendicular to the surface in the
vertex. Information about the normals gives openFrameworks information about
the correct lighting of the surface. Across the chapter, we will use the setNormals()
function for normals computing, which we will discuss.

Drawing in 3D

[194]

Computing normals using the setNormals() function
To compute normals for a mesh consisting of triangles, you can use the
following function:

//Universal function which sets normals for the triangle mesh
void setNormals(ofMesh &mesh){

 //The number of the vertices
 int nV = mesh.getNumVertices();

 //The number of the triangles
 int nT = mesh.getNumIndices() / 3;

 vector<ofPoint> norm(nV); //Array for the normals

 //Scan all the triangles. For each triangle add its
 //normal to norm's vectors of triangle's vertices
 for (int t=0; t<nT; t++) {
 //Get indices of the triangle t
 int i1 = mesh.getIndex(3 * t);
 int i2 = mesh.getIndex(3 * t + 1);
 int i3 = mesh.getIndex(3 * t + 2);

 //Get vertices of the triangle
 const ofPoint &v1 = mesh.getVertex(i1);
 const ofPoint &v2 = mesh.getVertex(i2);
 const ofPoint &v3 = mesh.getVertex(i3);

 //Compute the triangle's normal
 ofPoint dir = ((v2 - v1).crossed(v3 - v1)).normalized();

 //Accumulate it to norm array for i1, i2, i3
 norm[i1] += dir;
 norm[i2] += dir;
 norm[i3] += dir;
 }

 //Normalize the normal's length
 for (int i=0; i<nV; i++) {
 norm[i].normalize();
 }

 //Set the normals to mesh
 mesh.clearNormals();
 mesh.addNormals(norm);
}

Chapter 7

[195]

To use it in your project, insert this function at the end of the testApp.cpp file, and
add its declaration in the testApp.h file (outside the testApp class):

//Universal function which sets normals for the triangle mesh
void setNormals(ofMesh &mesh);

Now you can call setNormals(mesh) and the normals will be computed. You
need to call the setNormals(mesh) function after each modification of vertices
of mesh for the normals to be up-to-date.

Scaling using ofScale() while drawing affects not only the object's
vertices but the normals vectors too, and it can make shading improper.
So when using normals, just avoid scaling or recalculating the normals
so that they have unit length even after the usage of ofScale().

With lighting and normals, the pyramid looks a little more like a 3D object, which
changes its shade depending on its orientation:

Note that the lightness of all the surface triangles mainly depends on the orientation
of the central ("top") vertex of the pyramid. The reason is that shading of each
triangle is computed by interpolating the normals of its vertices, and in our case,
the normal of the central vertex is perpendicular to the pyramid's base. Such an
approach works well for drawing smooth surfaces; see the The oscillating plane
example section. Although in our case of pyramid, it can look a little bit unnatural.

To obtain the most natural visualization of the pyramid with sharp edges, we need to
draw triangles independently without formally creating any common vertices.

Drawing in 3D

[196]

Drawing sharp edges
The simplest way to achieve sharp edges is to add the vertices for all the triangles
in mesh and not use the addTriangle() function at all and then call the mesh.
setupIndicesAuto() function, which sets indices automatically such that vertices
(0, 1, 2) are used for drawing the first triangle, vertices (4, 5, 6) for the second triangle,
and so on.

This is example 07-3D/04-PyramidSharpEdges. This example
is a good starting point for drawing sharp 3D objects.
It is based on example 07-3D/03-PyramidLighting.

In the example with the pyramid, replace all the lines with addVertex() and
addTriangle() with the following lines:

//Pyramid's base vertices
ofPoint v0 = ofPoint(-200, -100, 0);
ofPoint v1 = ofPoint(200, -100, 0);
ofPoint v2 = ofPoint(0, 200, 0);
//Pyramid's top vertex
ofPoint v3 = ofPoint(0, 0, 100);
//Add triangles by its vertices
mesh.addVertex(v3); mesh.addVertex(v2); mesh.addVertex(v0);
mesh.addVertex(v3); mesh.addVertex(v1); mesh.addVertex(v2);
mesh.addVertex(v3); mesh.addVertex(v0); mesh.addVertex(v1);
mesh.setupIndicesAuto(); //Set up indices

As a result, you will see a pyramid with sharp edges as shown in the
following screenshot:

Chapter 7

[197]

We have considered a basic workflow with meshes. Now we will consider other
useful capabilities of the ofMesh class.

Drawing line segments and points
Instead of mesh.draw(), you can use the following functions:

• The mesh.drawWireframe() function draws only surface edges without the
interiors of the triangles. Such a mode of drawing is called wireframe drawing;
it is very useful for debugging, and of course, can be used as an effect.

• The mesh.drawVertices() function draws only vertices of the mesh. It is
useful for debugging and also as an effect.

Also, to represent not only triangular surfaces but also objects consisting of line
segments or points, use the mesh.setMode(mode) function, where mode has type
ofPrimitiveMode enumeration. To see all the possible values for mode, check its
definition. We will mention only three values:

• OF_PRIMITIVE_TRIANGLES is a default value, which draws a mesh
as triangles. We had considered how to use this mode in the pyramid
examples mentioned earlier.

• OF_PRIMITIVE_LINES draws a mesh as a number of line segments.
• OF_PRIMITIVE_POINTS draws a mesh as a number of points.

Let's consider the last two modes in detail.

Drawing line segments
Calling mesh.setMode(OF_PRIMITIVE_LINES) switches mesh to a mode in which
it draws line segments. After calling this function, add all vertices of segments using
mesh.addVertex(p), and for each segment, it adds the indices of the vertices
using the following code:

mesh.addIndex(i1); //Index of segment's first vertex
mesh.addIndex(i2); //Index of segment's second vertex

For example, to draw a tripod, create the mesh using the following code:

mesh.setMode(OF_PRIMITIVE_LINES);
mesh.addVertex(ofPoint(0, 0, 0)); //Vertex 0
mesh.addVertex(ofPoint(-100, -100, 0)); //Vertex 1
mesh.addVertex(ofPoint(100, -100, 0)); //Vertex 2

Drawing in 3D

[198]

mesh.addVertex(ofPoint(0, 100, 0)); //Vertex 3

mesh.addIndex(0); mesh.addIndex(1); //Segment 0
mesh.addIndex(0); mesh.addIndex(2); //Segment 1
mesh.addIndex(0); mesh.addIndex(3); //Segment 2

Note that for correct lighting you need to specify normals, which normally
cannot be defined for lines. So the best idea is to disable lighting using the
ofDisableLighting() function before drawing and then enabling it again
using the ofEnableLighting() function:

ofDisableLighting(); //Disable lighting
mesh.draw(); //Draw lines
ofEnableLighting(); //Enable lighting

Drawing points
Calling mesh.setMode(OF_PRIMITIVE_POINTS) switches mesh to a mode in which
it draws its vertices as points.

Additionally, call glPointSize(size) to specify point size in pixels, and call
glEnable(GL_POINT_SMOOTH) to draw circular points (instead of square points as
on some graphics cards). For example, add the following lines after specifying tripod
vertices in the previous example:

mesh.setMode(OF_PRIMITIVE_POINTS);
glPointSize(10);
glEnable(GL_POINT_SMOOTH);

Once you run the code, you will see four circles, corresponding to the tripod's vertices.

Coloring the vertices
It is possible to specify the colors of the vertices. In this case, you must provide
a color for all the vertices using the mesh.addColor(color) function; for
example, mesh.addColor(ofColor(255, 0, 0)). Note that in this case, the
ofSetColor() function will not affect the drawing of the mesh. Remember: you
should call this function as many times as you call the mesh.addVertex() function.

Chapter 7

[199]

Texturing
You can wrap any image or texture on the surface using the mesh.addTexCoord(
texPoint) function. Here texPoint is of the ofPoint type. It is a 2D point that
should lie in range [0, w] × [0, h], where w × h is the size of the image that you want to
use as a texture. Remember that you should call this function as many times as you call
the mesh.addVertex() function so that all the vertices will have texture coordinates.

During rendering each primitive of the mesh (whether triangle, line, or point
depends on the mesh's mode), the texture coordinates of each rendered pixel will
be calculated by OpenGL as interpolation of texture coordinates of the primitive's
vertices. Resulting texture coordinates for the pixel are used for the pixel's color
computing. In other words, the final pixel color is computed using three values:
the color given by the texture, the color of the last ofSetColor() calling, and the
shading information obtained from the light and normals data. To change the
algorithm of computing pixel color and the use of fragment shaders, see Chapter 8,
Using Shaders.

For example, let's wrap the sunflower.png image onto the pyramid.

This is example 07-3D/05-PyramidTextured. It is a
continuation of example 07-3D/04-PyramidSharpEdges.

Copy the image into the bin/data folder of the project, and declare the ofImage image
in the testApp class declaration. Then add the following lines in testApp::setup():

 //Set up a texture coordinates for all the vertices
 mesh.addTexCoord(ofPoint(100, 100)); //v3
 mesh.addTexCoord(ofPoint(10, 300)); //v2
 mesh.addTexCoord(ofPoint(10, 10)); //v0

 mesh.addTexCoord(ofPoint(100, 100)); //v3
 mesh.addTexCoord(ofPoint(300, 10)); //v1
 mesh.addTexCoord(ofPoint(10, 300)); //v2

 mesh.addTexCoord(ofPoint(100, 100)); //v3
 mesh.addTexCoord(ofPoint(10, 10)); //v0
 mesh.addTexCoord(ofPoint(300, 10)); //v1
 //Load an image
 image.loadImage("sunflower.png");

Drawing in 3D

[200]

Finally, in testApp::draw(), find the following lines:

ofSetColor(0, 128, 0); //Set a dark green color
mesh.draw();

Replace the preceding lines with the following:

 ofSetColor(255, 255, 255); //Set white color
 image.bind(); //Use image's texture for drawing
 mesh.draw(); //Draw mesh
 image.unbind(); //End using image's texture

After running the preceding code, you will see the pyramid with a wrapped texture
as shown in the following screenshot:

Working with vertices
There are a number of functions for accessing the vertices and their properties:

• The getNumVertices() function returns the number of vertices.
• The getVertex(i) function returns the position of the vertex with index i.
• The setVertex(i, p) function sets the position of vertex i to p. Note that

this function can change the vertex but it cannot add a new vertex. So if i is
greater or equal to mesh.getNumVertices(), you need to add a vertex
(or vertices) using the mesh.addVertex(p) function as described in
the Using ofMesh section.

Chapter 7

[201]

• The removeVertex(i) function deletes the vertex with index i. Be very
careful when using this function; after deleting a vertex, you should probably
also delete the corresponding normal, color, and texture coordinate, and
change the indices of the triangles to keep its coherence.

• The clearVertices() function deletes all the vertices. See corresponding
cautions for removeVertex().

• The clear() function clears the mesh, including its vertices, normals, and all
other arrays.

After changing vertices, you will most probably need to update the normals using
the setNormals(mesh) function, as described in the Computing normals using
the setNormals() function section.

There are similar functions for controlling normals, colors, texture coordinates,
and indices; for example, functions getNumNormals(), getNumColors(),
getNumTexCoords(), and getNumIndices() return number of normals, colors,
texture coordinates, and indices respectively.

Let's see a simple example of modifying the positions of the vertices.

The oscillating plane example
This example demonstrates how to create a flat plane from triangles and then
oscillate its vertices to obtain a dynamic surface. Also, the color of vertices will
depend on the oscillation amplitude.

This is example 07-3D/06-OscillatingPlane.

The example is based on the emptyExample project in openFrameworks. Begin with
adding the declaration and definition of the setNormals() function, as described in
the Computing normals using the setNormals() function section. Then in the testApp.h
file, in the testApp class declaration, add definitions of mesh and light:

ofMesh mesh; //Mesh
ofLight light; //Light

In the beginning of the testApp.cpp file, add constants with vertex grid size:

int W = 100; //Grid size
int H = 100;

Drawing in 3D

[202]

The setup() function adds vertices and triangles to the mesh and enables lighting:

void testApp::setup(){
 //Set up vertices and colors
 for (int y=0; y<H; y++) {
 for (int x=0; x<W; x++) {
 mesh.addVertex(
 ofPoint((x - W/2) * 6, (y - H/2) * 6, 0));
 mesh.addColor(ofColor(0, 0, 0));
 }
 }
 //Set up triangles' indices
 for (int y=0; y<H-1; y++) {
 for (int x=0; x<W-1; x++) {
 int i1 = x + W * y;
 int i2 = x+1 + W * y;
 int i3 = x + W * (y+1);
 int i4 = x+1 + W * (y+1);
 mesh.addTriangle(i1, i2, i3);
 mesh.addTriangle(i2, i4, i3);
 }
 }
 setNormals(mesh); //Set normals
 light.enable(); //Enable lighting
}

The update() function changes the z coordinate of each vertex using Perlin noise
(refer to Appendix B, Perlin Noise) and also sets its color between the range blue
to white:

void testApp::update(){
 float time = ofGetElapsedTimef(); //Get time
 //Change vertices
 for (int y=0; y<H; y++) {
 for (int x=0; x<W; x++) {
 int i = x + W * y; //Vertex index
 ofPoint p = mesh.getVertex(i);
 //Get Perlin noise value
 float value =
 ofNoise(x * 0.05, y * 0.05, time * 0.5);
 //Change z-coordinate of vertex

Chapter 7

[203]

 p.z = value * 100;
 mesh.setVertex(i, p);
 //Change color of vertex
 mesh.setColor(i,
 ofColor(value*255, value * 255, 255));
 }
 }
 setNormals(mesh); //Update the normals
}

The draw() function draws the surface and slowly rotates it:

void testApp::draw(){
 ofEnableDepthTest(); //Enable z-buffering

 //Set a gradient background from white to gray
 ofBackgroundGradient(ofColor(255), ofColor(128));

 ofPushMatrix(); //Store the coordinate system

 //Move the coordinate center to screen's center
 ofTranslate(ofGetWidth()/2, ofGetHeight()/2, 0);

 //Calculate the rotation angle
 float time = ofGetElapsedTimef(); //Get time in seconds
 float angle = time * 20; //Compute angle. We rotate at speed
 //20 degrees per second
 ofRotate(30, 1, 0, 0); //Rotate coordinate system
 ofRotate(angle, 0, 0, 1);

 //Draw mesh
 //Here ofSetColor() does not affects the result of drawing,
 //because the mesh has its own vertices' colors
 mesh.draw();

 ofPopMatrix(); //Restore the coordinate system
}

Drawing in 3D

[204]

Run the example and you will see a pulsating surface that slowly rotates on the screen:

Now replace in the testApp::draw() function in the line mesh.draw(); by the
following line:

mesh.drawWireframe();

Now, run the project and you will see the wireframe structure of the surface.

Until now you knew how to create simple animated smooth surfaces and
disconnected clouds of primitives. Let's consider an advanced example of
constructing a smooth surface that grows and twists in space.

The twisting knot example
In this example we will create a tube-like surface, that is formed from a number of
deformed circles. At each update() call, we will generate one circle and connect it
with the previous circle by adding triangles to the surface. At each step the circle
will slowly move, rotate, and deform in space. As result, we will see a growing and
twisting 3D knot.

This is example 07-3D/07-TwistingKnot.

Chapter 7

[205]

The example is based on the emptyExample project in openFrameworks. Begin with
adding declaration and definition of the setNormals() function, as is described in
the Computing normals using the setNormals() function section. Then in the testApp.h
file, in the testApp class declaration, add definitions of the mesh, light, and
addRandomCircle() function:

ofMesh mesh; //Mesh
ofLight light; //Light
void addRandomCircle(ofMesh &mesh); //Main function which
 //moves circle and adds triangles to the object

In the beginning of the testApp.cpp file, add the constants and the variables for the
circle that will be used for knot generation:

//The circle parameters
float Rad = 25; //Radius of circle
float circleStep = 3; //Step size for circle motion
int circleN = 40; //Number of points on the circle

//Current circle state
ofPoint pos; //Circle center
ofPoint axeX, axyY, axyZ; //Circle's coordinate system

The setup() function sets the initial values of the circle's position and also enables
lighting with light, using its default settings:

void testApp::setup(){
 pos = ofPoint(0, 0, 0); //Start from center of coordinate
 axeX = ofPoint(1, 0, 0); //Set initial coordinate system
 axyY = ofPoint(0, 1, 0);
 axyZ = ofPoint(0, 0, 1);
 light.enable(); //Enable lighting
 ofSetFrameRate(60); //Set the rate of screen redrawing
}

The update() function just calls the addRandomCircle() function, which adds one
more circle to the knot:

void testApp::update(){
 addRandomCircle(mesh);
}

Drawing in 3D

[206]

The draw() function draws the mesh on the screen. Note that we use the mesh.
getCentroid() function, which returns the center of mass of mesh's vertex array.
In other words, we apply it for the shift coordinate system ofTranslate(-mesh.
getCentroid()), which helps us to draw our object positioned in the center :

void testApp::draw(){
 ofEnableDepthTest(); //Enable z-buffering

 //Set a gradient background from white to gray
 ofBackgroundGradient(ofColor(255), ofColor(128));

 ofPushMatrix(); //Store the coordinate system
 //Move the coordinate center to screen's center
 ofTranslate(ofGetWidth()/2, ofGetHeight()/2, 0);

 //Calculate the rotation angle
 float time = ofGetElapsedTimef(); //Get time in seconds
 float angle = time * 20; //Compute the angle.
 //We rotate at speed 20 degrees per second
 ofRotate(angle, 0, 1, 0); //Rotate the coordinate system
 //along y-axe
 //Shift the coordinate center so the mesh
 //will be drawn in the screen center
 ofTranslate(-mesh.getCentroid());

 //Draw the mesh
 //Here ofSetColor() does not affects the result of drawing,
 //because the mesh has its own vertices' colors
 mesh.draw();

 ofPopMatrix(); //Restore the coordinate system
}

The most important function in the example is addRandomCircle(). It
pseudorandomly moves the circle, adds new vertices from the circle to the
object's vertex array, and adds corresponding triangles to the object. It also
sets colors for the new vertices.

void testApp::addRandomCircle(ofMesh &mesh){
 float time = ofGetElapsedTimef(); //Time

 //Parameters – twisting and rotating angles and color
 float twistAngle = 5.0 * ofSignedNoise(time * 0.3 + 332.4);
 float rotateAngle = 1.5;

Chapter 7

[207]

 ofFloatColor color(ofNoise(time * 0.05),
 ofNoise(time * 0.1),
 ofNoise(time * 0.15));
 color.setSaturation(1.0); //Make the color maximally
 //colorful

 //Rotate the coordinate system of the circle
 axeX.rotate(twistAngle, axyZ);
 axyY.rotate(twistAngle, axyZ);

 axeX.rotate(rotateAngle, axyY);
 axyZ.rotate(rotateAngle, axyY);

 //Move the circle on a step
 ofPoint move = axyZ * circleStep;
 pos += move;

 //Add vertices
 for (int i=0; i<circleN; i++) {
 float angle = float(i) / circleN * TWO_PI;
 float x = Rad * cos(angle);
 float y = Rad * sin(angle);
 //We would like to distort this point
 //to make the knot's surface embossed
 float distort = ofNoise(x * 0.2, y * 0.2,
 time * 0.2 + 30);
 distort = ofMap(distort, 0.2, 0.8, 0.8, 1.2);
 x *= distort;
 y *= distort;

 ofPoint p = axeX * x + axyY * y + pos;
 mesh.addVertex(p);
 mesh.addColor(color);
 }

 //Add the triangles
 int base = mesh.getNumVertices() - 2 * circleN;
 if (base >= 0) { //Check if it is not the first step
 //and we really need to add the triangles
 for (int i=0; i<circleN; i++) {
 int a = base + i;
 int b = base + (i + 1) % circleN;
 int c = circleN + a;
 int d = circleN + b;

Drawing in 3D

[208]

 mesh.addTriangle(a, b, d); //Clock-wise
 mesh.addTriangle(a, d, c);
 }
 //Update the normals
 setNormals(mesh);
 }
}

Run the example and you will see a growing and twisting knot, as shown in the
following screenshot:

Note that we control the rate of testApp::update() callings (and hence
the addRandomCircle() rate) using the ofSetFrameRate(60) call in
testApp::setup(). If you change the rate, say to ofSetFrameRate(30),
you will obtain a differently shaped knot. To make the resultant shape
independent of frame rate, you should make the circleStep parameter
dependent on the time between current and previous frames.

At each update() call, the application constantly adds new vertices
and triangles to the object. Then it recalculates all the normals, though
many of the triangles did not change. So application performance will
degrade with time because the setNormals() function will take more
and more computing power. To solve this problem, you can optimize
the setNormals() function so it does not recalculate the unchanged
normals and does not check the old triangles at all.

Chapter 7

[209]

Additional topics
In this chapter we mainly considered representing and drawing 3D objects using
openFrameworks. For further learning, we suggest studying the following topics:

• Working with the ofLight class to control lights, that is, the type of light
(spot light and point light), its position, light direction, and color parameters.
See openFrameworks examples examples/3d/normalsExample and
examples/3d/advanced3dExample.

• Working with the ofCamera and ofEasyCam classes to control the camera,
that is, the position of the observer of the 3D scene. The camera lets you move
easily through the virtual 3D world and also change perspective parameters.
See openFrameworks examples examples/3d/cameraRibbonExample and
examples/3d/easyCamExample.

• Using 3D model files with the .3ds and .dae extensions. You can load and
draw such files as static or animated objects. Note that you can use 3D file
models as a source of vertex data for further manipulation and processing. See
openFrameworks examples examples/3d/modelNoiseExample, examples/
addons/3DModelLoaderExample, and examples/addons/assimpExample.

• Rendering volumetric data using the marching cubes algorithm. This
technique allows rendering isolines of an arbitrary function defined in
some volume. It opens the possibility of drawing complex surfaces
with constantly changing shape and number of connected components,
such as metaballs. To use this algorithm, download and install the
ofxMarchingCubes addon from ofxaddons.com and see its example. For
more details on installing addons see Appendix A, Working with Addons.

Summary
In this chapter we learned how to represent, modify, and draw 3D objects using the
ofMesh class and also how to perform simple 3D drawing with the ofTriangle()
function. We looked at examples of drawing a sphere-shaped cloud of trianlges, a
oscillating surface, and a twisting 3D knot.

In the next chapter, we will cover how to use shaders to process images and 3D
object geometry.

Using Shaders
Shader is a small program that allows you to unleash the computation power of
GPUs. This power exceeds the computation capabilities of the most powerful CPUs.
So using shaders is crucial for creating competitive and astonishing projects. This
chapter will cover the basics on using shaders in openFrameworks for creating
2D video effects and 3D object deformations. We will cover the following topics:

• Structure of a shader's code
• An example of a simple fragment shader
• Creating video effects with fragment shaders
• Deforming objects with a vertex shader
• Using a geometry shader

Basics of shaders
Shaders are small programs executed on a Graphics Processing Unit (GPU), which
is located on the video card. Shaders work when OpenGL renders something on
the screen (or in the screen buffer), and they modify the geometry and pixels of the
rendered objects. They work very fast and perform advanced processing of images
and complex 3D scenes at faster rates, which is impossible using today's CPUs. This
is the reason that shaders are widely used for interactive rendering and VJing.

Shaders are written using Graphics Library Shading Language (GLSL), which
is actually a C++ language, and are extended with vector and matrix types and
mathematical operations. Some of the C++ features, such as working with memory
(pointers, references, and the new operator) and classes, are not included in GLSL.

Using Shaders

[212]

Formally, GLSL is a subset of the C language with some
extensions, including constructor-like functions for
initializing vectors and other types. As a result, the GLSL
style of programming, in general, is very similar to C++.

When shaders are used in openFrameworks, the shaders' codes are stored in the text
files in the data folder of the project. Unlike an ordinary C++ program, shaders' code
is compiled at runtime, just when it's needed. So you can change the shaders' code
and restart your project without recompiling the openFrameworks' project.

No special GLSL compiler is needed because it is embedded in all the modern
video card drivers. So shaders are universal; once written, they can be used in many
interactive software platforms such as openFrameworks, Processing, Cinder, Quartz
Composer, Touch Designer, and vvvv.

You can run and edit simple shaders right in your browser using
online shader sandboxes such as http://glsl.heroku.com.
They contain galleries with examples of great shaders which
you can learn and use in your projects. For example, try
http://glsl.heroku.com/e#8801.0.

Working with shaders in openFrameworks is simple with the class ofShader. It lets
you load and compile the shaders, enable the shaders and set their parameters, and
finally disable the shaders.

Types of shaders
There are several types of shaders. Each of them works in a particular part of the
rendering pipeline. You can use only one shader of a given type at a particular
moment. Nevertheless, you can use many different shaders of the same type by
switching between them.

In this chapter, we will consider only three types of shaders, which are the most
popular and are used in most applications:

• A vertex shader processes each vertex of the rendered object and changes its
properties, such as position, normal, color, and some custom attributes. It can
be used for geometric transformations of 3D objects. See the Deforming objects
with a vertex shader section for details.

Chapter 8

[213]

• A geometry shader gets the list of vertices of a primitive to be rendered (for
example, the three vertices of a triangle), and generates a new list of vertices,
forming one or several primitives that will actually be rendered instead of the
one that was input. For example, it can replace each rendered triangle with
a bunch of lines that form a "furry" surface. See the Using a geometry shader
section for details.

• A fragment shader processes the color and depth of a pixel which is ready
to be rendered to the screen or screen buffer. A fragment shader can be used
for implementing postprocessing effects, and also for more complex image
processing and generation. See the Creating video effects with fragment shaders
section for details.

See the full list of the different types of shaders in Chapter 2,
Overview of OpenGL Shading of the OpenGL Shading Language
Specification document. Currently, the latest specification can be
downloaded at http://www.opengl.org/registry/doc/
GLSLangSpec.4.30.6.pdf. Check newer versions and other
documents at http://www.opengl.org/documentation/glsl.

Though all the shaders are written in one GLSL language, different types of
shaders have different built-in input and output variables and special commands
in their syntax.

Shaders work in a particular order, that is, first the vertex
shader, then the geometry shader, and finally the fragment
shader. If you want to use the vertex or fragment shader, you
need to specify and enable both of them. If you want to use
the geometry shader, you need to specify and enable all three
types of shaders. This is not a problem because when you
are interested in one particular type of shader, you can use
"dummy" shaders for the other shader types.

When to use shaders
When deciding whether you should use the shaders technology in your
openFrameworks project or not, take into account the following considerations:

• If you need to make a vibrant real-time visualization, including the
transforming and pulsating of 3D objects or images, then using shaders
for the effects is most probably the best choice.

Using Shaders

[214]

• If you have some shader code and want to try it in your project, you can
often embed the shader without it being changed but sometimes, a little
modification is needed in the shader's code.

• If you have a working project and are manipulating the project with 2D
graphics or 3D objects' geometry using CPU, and you notice that it works
too slowly, then you can move a part of the graphics computations to
shaders. Then the CPU usage will decrease, and the overall application
performance will (often radically) improve.

• If you need to perform massive nongraphics computations, such as simulating
the physics of the million particles, you still can do it with shaders. For such a
purpose, you need a way for retaining shaders' processing results:

 ° To retain data from the vertex and geometry shaders, use
OpenGL's Transform Feedback feature (see details in OpenGL
Wiki at http://www.opengl.org/wiki/Transform_Feedback)

 ° To retain data from a fragment shader, perform rendering in an
offscreen buffer (see details in the Using FBO for offscreen drawing
section in Chapter 2, Drawing in 2D)

Alternatively, instead of vertex, geometry or fragment shaders, you can use
compute shaders, which let you perform universal computations and output
their results in your custom arrays.

For extremely complex computations; instead of shaders,
a better option would be to use powerful GPGPU
technologies such as OpenCL and NVIDIA CUDA.

Anyway, shaders and other GPU-programming technologies are the dominant
topics in modern computing and supercomputing in the near future. So we highly
recommend learning them.

Now let's consider the structure of the simplest fragment and vertex shaders and
some basics of GLSL language. (A geometry shader has a similar structure, and so is
not discussed in this section. See the Using a geometry shader section for details.)

Chapter 8

[215]

Structure of a shader's code
The shader's text is a C++ file and contains the void main() function. This function
works on GPU and is called once for processing every object (vertex, primitive, or
pixel, depending on the shader's type). The main() function has no parameters.
All the necessary parameters such as coordinates, colors, and textures are held by
built-in GLSL variables such as gl_Color and gl_Position. Also, you can use your
own custom parameters passed from your CPU code, such as float time (see the
Passing a float parameter to a shader section).

The simplest code for the fragment shader will look as follows:

#version 120
void main() {
 gl_FragColor = vec4(1.0, 0.0, 0.0, 1.0);
}

This shader will render everything in the red color. Namely, if you enable the
shader and then draw lines, images, and any other objects, then OpenGL will
call the shader's main() function for each drawn pixel, and the shader will set
the pixel color to red. Let's study the shader's code in detail.

The first line #version 120 is a compiler directive, which means that we want
to use the GLSL Version 1.2 in the shader. Though this is quite an old version of
the language, it is currently used in all the openFrameworks examples and in all
our examples in the chapter. The reason is that Version 1.2 is the last version that
contains many built-in variables, which simplify shader interfacing. (Most of these
variables were removed in the latest GLSL versions. Though this makes shaders
more flexible, it seems a little hard to begin the study of shaders with a very high
level of flexibility.)

The rest of the code is the main() function. The body of the function consists of a
single line which sets the gl_FragColor variable to value vec4(1.0, 0.0, 0.0,
1.0). Actually, gl_FragColor is a built-in variable, which holds an output color of
the pixel processed by a fragment shader. The mission of any fragment shader is to
set a value to this gl_FragColor variable inside its main() function. In this example,
we set it to a constant value. For more realistic shaders, the output color depends on
the pixel position gl_FragCoord, current drawing color, textures, normals, lighting
information and other parameters.

The list of built-in GLSL variables can be found at:
http://www.opengl.org/sdk/docs/manglsl/xhtml/
index.html#Built-in%20Variables

Using Shaders

[216]

Notation vec4(1.0, 0.0, 0.0, 1.0) returns the object of type vec4. This is a
vector with four float components. In our example, vec4 holds the color and its
components are red, green, blue, and alpha respectively. In GLSL, color components
have a meaningful range from 0.0 to 1.0, so vec4(1.0, 0.0, 0.0, 1.0) means
the opaque red color.

Besides vec4, there are types vec2 and vec3, which hold the float values with two
and three components respectively. All these types are implemented in hardware
and work very fast.

There are several ways for accessing the vector components in GLSL, similar to
working with union in C++. Namely, if you have a vec4 v object, you can access
its four components in the following ways:

• As an ordinal array: v[0], v[1], v[2], and v[3]
• As a color: v.r, v.g, v.b, and v.a
• As coordinates: v.x, v.y, v.z, and v.w

The fourth coordinate v.w comes from projective coordinates'
notation and most often is set to 1.0.

• As texture coordinates: v.s, v.t, v.p, and v.q

In GLSL, you can use a notation called swizzle. This technique allows
the usage of any combination of letters of the same type to access
several vector components at once:

• v.xyz means the vec3 vector (v.x, v.y, v.z)
• v.bg means the vec2 vector (v.b, v.g)
• v.xy = vec2(0.0, 100.0); and vec3 u = v.xxx;

are correct GLSL operations
See details on GLSL types and swizzle at http://www.opengl.
org/wiki/GLSL_Type.

There is an exhaustive list of the built-in mathematical functions, which
work with numbers and vectors, such as sin(x), distance(v, u), and
dot(u, v). You can find the list of functions in the full language specification
at http://www.opengl.org/documentation/glsl/.

Chapter 8

[217]

In order to make the fragment shader work, you need to enable a vertex
shader too. The simplest vertex shader just transforms the input vertex position
gl_Vertex to output the vertex position gl_Position using a built-in matrix
gl_ModelViewProjectionMatrix. This matrix translates the internal coordinate
system of an object into screen coordinates. The simplest vertex shader's code is
as follows:

#version 120
void main() {
 gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;
}

The preceding shaders' examples only illustrate the shaders' structure and are
too trivial to be useful. Now, we will consider a really useful example of using
the shaders in an openFrameworks project.

A simple fragment shader example
Consider a complete example of using the fragment shader in an openFrameworks
project. It will be a base for other fragment shaders' examples. The shader here is
pretty simple. It just inverts the colors of all the drawn pixels.

This is example 08-Shaders/01-ShaderInverting.

This example is based on the emptyExample project in openFrameworks.

Creating the fragment shader
In the bin/data folder, create a new text file shaderFrag.c that contains the
fragment shader's code as follows:

#version 120
#extension GL_ARB_texture_rectangle : enable
#extension GL_EXT_gpu_shader4 : enable

uniform sampler2DRect texture0;

void main(){
 //Getting coordinates of the current pixel in texture
 vec2 pos = gl_TexCoord[0].xy;

 //Getting the pixel color from the texture texture0 in pos

Using Shaders

[218]

 vec4 color = texture2DRect(texture0, pos);

 //Changing the color - invert red, green, blue components
 color.r = 1.0 - color.r;
 color.g = 1.0 - color.g;
 color.b = 1.0 - color.b;

 //Output the color of shader
 gl_FragColor = color;
}

We will use the .c extension for the shaders files in this chapter,
because it seems especially convenient to open these files with
proper highlighting with your programming IDE. Note, the native
openFrameworks example shaders files have extensions .frag,
.vert, and .geom, and sometimes, shaders have the extension
.glsl. Actually, you can choose any convenient extension.

The first line of the code specifies Version GLSL 1.2; see the Structure of a shader's code
section for details. The second and third lines enable some GLSL features that existed
in the newest GLSL versions but were not included in GLSL 1.2. So it lets us use
modern language capabilities inside GLSL 1.2.

The line uniform sampler2DRect texture0; is something very special. The line
declares that the shader wants to use some texture, which you bound during rendering
in openFrameworks. Such a binding occurs implicitly when you draw an image on the
screen. If you do not need to draw the image, but want to bind the image for using in a
shader, do it by calling image.getTextureReference().bind().

If you need to use several images, you should declare them in a similar way and
explicitly bind them to the shader; see the Processing several images section.

The body of the shader's main() function begins with getting the current texture
coordinates from the built-in gl_TexCoord[0] variable. This variable holds the
texture coordinate of texture0 for the current pixel for which the shader is called.

Then, using the built-in texture2DRect() function, we get the color from the
texture0 in the position pos. Note, the texture coordinates can be a non-integer
value, and GLSL interpolates the texture color properly.

Finally, we change the color parameter by inverting its red, green, and blue
components. The last line of the main() function's body sets the resulted color to
the built-in gl_FragColor variable, meaning that this color will be drawn in the
processed pixel.

Chapter 8

[219]

The vertex shader
In order to work with the fragment shader, we need a vertex shader. In the bin/data
folder, create a new text file shaderVert.c, which contains the "dummy" vertex
shader's code:

#version 120
#extension GL_ARB_texture_rectangle : enable
#extension GL_EXT_gpu_shader4 : enable

void main() {
 gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;
 gl_TexCoord[0] = gl_MultiTexCoord0;
 gl_FrontColor = gl_Color;
}

It begins with the same three lines that specify the GLSL 1.2 Version and extensions.
The body of the shader's main() function does nothing special and just passes all the
needed information to the fragment shader. Namely, the first line gl_Position = gl_
ModelViewProjectionMatrix * gl_Vertex; translates the current processed vertex
position to the screen coordinate system (see the Structure of a shader's code section).
As you will see in the following example, we will draw just one image (fbo) with the
shader, so the vertex shader will process just four vertices of the image's corners.

The second line of the function sets the built-in vertex attribute gl_TexCoord[0]
equal to the texture coordinate of the bound image, held in the built-in variable
gl_MultiTexCoord0. This value will be interpolated to the gl_TexCoord[0]
value of each pixel incoming to the fragment shader.

Such an interpolation is one of the most important things in the shaders' technology,
so let's look at it more closely. In our case, we will draw an image on the screen
with shaders. Drawing an image technically means that openFrameworks renders
a textured rectangle using OpenGL. The rectangle is drawn by specifying the four
vertices' coordinates and texture coordinates and binding the corresponding image
texture. The vertex shader processes these four vertices, and OpenGL rasterizes
the rectangle as a number of pixels. Then each pixel is processed by our fragment
shader and the texture coordinates for each pixel gl_TexCoord[0] are the result
of interpolation of texture coordinates of vertices in correspondence to the relation
between the pixel's position and the position of the four vertices.

Using Shaders

[220]

In a similar way, you can use other attributes such as normals and colors, and even
create your own custom attribute. You set values of an attribute at each vertex, and
while rendering the object's primitive, OpenGL will automatically interpolate these
values at each rendered pixel. So you can use the interpolated value of the attribute
in the given pixel for some computations in the fragment shader. The detailed
illustration of this is outside the scope of this book.

The last line of the vertex shader gl_FrontColor = gl_Color is
not necessary for this example, but can be effective for your future use
of the shader. gl_Color is a built-in variable that is equal to the color
you set by calling the ofSetColor() function in openFrameworks
code. gl_FrontColor is a built-in variable that assigns a color for
the frontal faces of 3D and 2D objects. We draw 2D images using
these frontal sides, so this value is passed to the fragment shader
as a built-in gl_Color variable. So you can make the result of the
fragment shader responsive to ofSetColor() callings by changing
its last line gl_FragColor = color to gl_FragColor = color
* gl_Color.

Embedding shaders in our project
The shaders are ready. Let's embed these shaders in the project.

In the testApp.h file, in the testApp class declaration, add the following lines:

ofShader shader; //Shader
ofFbo fbo; //Buffer for intermediate drawing
ofImage image; //Sunflower image

The main line here is ofShader shader, which declares the shader object for
managing work with shaders. It can hold the vertex, fragment, and geometry
shaders at once. This is very useful because these shaders cannot work alone.

If you need to use several sets of shaders, you need to declare new ofShader objects
for each of them, as shown in the following code:

ofShader shader2, shader3; //, ...

We will use the fbo object as an intermediate buffer for rendering all that we want to
see on the screen (see the Using FBO for offscreen drawing section in Chapter 2, Drawing
in 2D). Then we will enable shader and draw fbo on the screen. Because shader
is enabled, the drawing will be passed through shaders that are contained in the
shader. So the four corners of the image will be processed by a vertex shader,
and all drawn pixels will be processed by a fragment shader.

Chapter 8

[221]

Such a technique of rendering the screen in the buffer and then
passing the buffer through a fragment shader is widely used for
applying postprocessing effects to the whole screen.

The setup() function loads the vertex and fragment shaders' texts into the shader
object, allocates fbo, and also loads image, which we will use for test drawing.

void testApp::setup(){
 shader.load("shaderVert.c", "shaderFrag.c");

 fbo.allocate(ofGetWidth(), ofGetHeight());
 image.loadImage("sunflower.png");
}

The shader.load() call not only loads the shaders' texts but also
compiles them.
During compilation, all the errors will be printed on the console. If
some error occurs, the shader will not work. So don't forget to check
the console while working with shaders.

The update() function is empty here. The draw() function consists of two parts—
drawing a background and image to the fbo buffer and drawing fbo to the screen
through shader:

void testApp::draw(){
 //1. Drawing into fbo buffer
 fbo.begin(); //Start drawing into buffer

 //Draw something here just like it is drawn on the screen
 ofBackgroundGradient(ofColor(255), ofColor(128));
 ofSetColor(255, 255, 255);
 image.draw(351, 221);

 fbo.end(); //End drawing into buffer

 //2. Drawing to screen through the shader
 shader.begin(); //Enable the shader

 //Draw fbo image
 ofSetColor(255, 255, 255);
 fbo.draw(0, 0);

 shader.end(); //Disable the shader
}

Using Shaders

[222]

Note that we enable and disable the shader by calling shader.begin() and shader.
end(). The shader works only when it is enabled.

You cannot enable several ofShader objects simultaneously. If you need
to perform image processing with many shaders, do it using a processing
chain that is made from several ofShader and ofFbo objects.

The project is ready. Before running it, copy the sunflower.png file into the bin/data
folder of your project. When you run the code, you will see the inverted sunflower
image as shown in the following screenshot:

Comment the following lines of the fragment shader as follows:

color.r = 1.0 – color.r;
color.g = 1.0 – color.g;
color.b = 1.0 – color.b;

When you do so, you will see the original, unprocessed image. Now change these
lines to the following line:

color.rg = color.gr;

Once you do so, you will see the red and green components of the image. We will
continue investigating using fragment shaders for postprocessing and video effects,
but let's first talk a little about debugging shaders.

Chapter 8

[223]

Debugging shaders
The newest GLSL versions have debugging capabilities, and there are number of
utilities for debugging shaders. But most of the C++ IDEs cannot debug shaders the
way we deal with ordinary C++ programs, using breakpoints and watches.

So the easiest way for working and debugging shaders is the following:

1. Start your project that will use shaders from the working sketch.
2. If you change the shader's code, do not add any new modifications until it

compiles and runs correctly.
3. During the shader code modification, check the console messages, because

the shader's errors are printed there.
4. To debug the shader, you cannot print anything using cout. But you can

render some intermediate shader values on the screen by representing the
values as pixel colors. For example, if you are interested in some q variable,
which takes values in [0, 100], then add the line gl_FragColor = vec4(
q*0.01, 0.0, 0.0, 1.0) at the end of the fragment shader's main()
function and you will see its distribution in red.

Creating video effects with fragment
shaders
In this section, we will extend the knowledge of shaders and will see how to pass
parameters from your C++ code, how to use Perlin noise, and how to process several
images. The examples will be about the fragment shaders, but all the principles
extend to the vertex and geometry shaders.

Passing a float parameter to a shader
In order to make the shader interactive, we need a way to pass in it some parameters,
such as time, mouse position, and some arrays. To add a parameter, you need to
add its declaration in the shader's code using the uniform keyword. For example,
to declare the time parameter, use the following line:

uniform float time;

To specify the parameter's value in openFrameworks, you need to add the following
line after the shader.enable() calling:

shader.setUniform1f("time", time);

Using Shaders

[224]

The 1f suffix in the setUniform1f() function name means that you pass one float
value to the shader. The first parameter "time" indicates the parameter name as it's
declared in the shader. The second parameter time is a float variable holding the
time value:

float time = ofGetElapsedTimef();

Let's illustrate this in a simple example.

A simple geometrical distortion example
This example uses a fragment shader for distorting the geometry of an image. It
transforms the image by shifting its horizontal lines by a sine wave, which also
changes with time.

This example is similar to the example, which is described in the
A simple geometrical distortion example section in Chapter 4, Images
and Textures. However, it is based on the shaders technology. So it
works much faster and the resultant image has no aliasing effect.

This is example 08-Shaders/02-ShaderHorizDistortion. The project is based on
the example given in the A simple fragment shader example section.

The fragment shader's code is as follows:

#version 120
#extension GL_ARB_texture_rectangle : enable
#extension GL_EXT_gpu_shader4 : enable

uniform sampler2DRect texture0;

uniform float time; //Parameter which we will pass from OF

void main(){
 //Getting the coordinates of the current pixel in texture
 vec2 pos = gl_TexCoord[0].st;

 //Changing pos by sinewave
 float amp = sin(pos.y * 0.03);
 pos.x += sin(time * 2.0) * amp * 50.0; //Shifting x-coordinate

 //Getting pixel color from texture tex0 in position pos
 vec4 color = texture2DRect(texture0, pos);
 //Output of shader
 gl_FragColor = color;
}

Chapter 8

[225]

This shader sets the color obtained by shifting the original position pos along the
x axis to its output value gl_FragColor. The value of shifting depends on time as
sin(time * 2.0) and on the y coordinate as sin(pos.y * 0.03).

In the openFrameworks' project, add the following lines to the draw() function's
body, just after the shader.begin() line:

float time = ofGetElapsedTimef();
shader.setUniform1f("time", time);

This code will set the time variable equal to the number of seconds from the
application's start, and set it to the shader's time parameter.

Running the project, you will see a waving sunflower image as shown in the
following screenshot:

Play with different distortion functions. For example, find the following line
in shaderFrag.c:

float amp = sin(pos.y * 0.03);

Replace the preceding line by the following line:

float amp = sin(pos.x * 0.03);

Using Shaders

[226]

Passing the float array to the shader
Sometimes it is necessary to pass to the shader not just a single float value but an
array of floats. To do this, just declare the array in the shader's code as follows:

#define N (256)
uniform float myArray[N];

Now bind the array from the openFrameworks project' code:

shader.setUniform1fv("myArray", myArray, 256);

In the preceding line of code, myArray is a float array with 256 elements.

In this example, we declared an array with 256 elements just
for certainty. You can use any other arrays' size.

Using Perlin noise in shaders
It is a good idea to use Perlin noise in shaders (see Appendix B, Perlin Noise, for details
on Perlin noise). Though the GLSL language specification has built-in functions
noise1, noise2(), noise3(), and noise4() for Perlin noise computing, most of
the video cards return a zero value when calling these. So we need to implement it
by ourselves. Fortunately, there are several ready-to-use Perlin and simplex noise
implementations for GLSL, which are open for use.

We will use Perlin and simplex noise developed by Ashima Arts and Stefan Gustavson
in the webgl-noise library located at https://github.com/ashima/webgl-noise.
This library is distributed along with the MIT license. Download and unpack the
library, and then copy and paste the necessary functions right into your shader's
code. Don't forget to include information about the license as requested in the
library's description. Let's illustrate the usage of Perlin noise in an example.

A liquify distortion example
Let's implement a fragment shader, which will shift each pixel using Perlin noise.
The resultant effect will be liquid-like waving of the input image.

This is example 08-Shaders/03-ShaderLiquify.

The project is based on the 08-Shaders/02-ShaderHorizDistortion example,
which was explained in the A simple geometrical distortion example section.

Chapter 8

[227]

Change the fragment shader's text by the following code:

#version 120
#extension GL_ARB_texture_rectangle : enable
#extension GL_EXT_gpu_shader4 : enable
uniform sampler2DRect texture0;
uniform float time;

//Classic Perlin noise function declaration
float cnoise(vec3 P);

void main(){
 vec2 pos = gl_TexCoord[0].xy;

 //Shift pos using Perlin noise
 vec2 shift;
 shift.x = cnoise(vec3(pos*0.02, time * 0.5 + 17.0))*30.0;
 shift.y = cnoise(vec3(pos*0.02, time * 0.5 + 12.0))*30.0;
 pos += shift;

 vec4 color = texture2DRect(texture0, pos);
 //Output of the shader
 gl_FragColor = color;
}
//Insert src/classicnoise3D.glsl file contents here
//---------

Also, you need to add the code definition of the cnoise() function by pasting the
contents of the src/classicnoise3D.glsl file located in the webgl-noise library,
at the end of the code.

We decided to put the definition of the cnoise() function at the
end of the shader for the convenience of editing our own code.

The declared cnoise() function computes the Perlin noise as a function of three
parameters. We use it for computing the shift vector, which pseudo-randomly
depends on the current position pos and time. (See Appendix B, Perlin Noise, for
details). Then, we shift pos and get the resulting color from this shifted position.

Using Shaders

[228]

Run the example, and you will see the liquid-like waving of the sunflower image as
shown in the following screenshot:

Processing several images
For some effects such as masking, the fragment shader should read colors from
more than one image. To use several images, in the shader's code you should
declare additional uniform sampler2DRect parameters:

uniform sampler2DRect texture1; //Second image
uniform sampler2DRect texture2; //Third image
//and so on

In openFrameworks' project code, you should link your images' textures to this
shader's parameters, right after the shader.enable() calling:

shader.setUniformTexture("texture1",image2.getTextureReference(),
 1);
shader.setUniformTexture("texture2",image3.getTextureReference(),
 2);
//and so on

Here, the first parameter means the shaders' uniform parameter name, the second
is texture, and the third is OpenGL texture identifier, which should be more than 0,
because the identifier 0 is used for default binding to texture0 in the shader (see the
Structure of a shader's code section for details on texture0).

Chapter 8

[229]

A masking example
Let's demonstrate the processing of several images by creating a fragment shader
that masks the drawing image with some predefined mask.

This is example 08-Shaders/04-ShaderMasking.

The project is based on the 08-Shaders/02-ShaderHorizDistortion example,
which was explained in the A simple geometrical distortion example section.

Create the fragment shader with the following code:

#version 120
#extension GL_ARB_texture_rectangle : enable
#extension GL_EXT_gpu_shader4 : enable

uniform sampler2DRect texture0;
uniform sampler2DRect texture1; //Second texture

void main(){
 vec2 pos = gl_TexCoord[0].xy;
 vec4 color0 = texture2DRect(texture0, pos);
 vec4 color1 = texture2DRect(texture1, pos);
 //Compute resulted color
 vec4 color;
 color.rgb = color0.rgb;
 color.a = color1.r;
 //Output of the shader
 gl_FragColor = color;
}

This shader assumes that both images have the same size, and uses the red component
of the texture1 pixel for setting the alpha value of the output color. To use the shader,
make a grayscale mask, enable shader, bind the mask to texture1, and then draw
your fbo image. The pixels, corresponding to the black pixels in the mask, will have
zero alpha in the output picture, and so will be invisible.

Using Shaders

[230]

See the full example code in 08-Shaders/04-ShaderMasking, where we use this
shader for masking the sunflower image with the rotating triangle. The following
screenshot shows the original image, the mask, and the result of applying the shader:

An audio-reactive project example
This is the end of the Creating video effects with fragment shaders section. Let's
consider the concluding example, which combines music and images for
obtaining audio-reactive visualization using a shader.

This is example 08-Shaders/05-ShaderAudioReactive.

This example plays music and computes the spectrum array spectrum of the current
sound (see the Getting spectral data from sound section in Chapter 6, Working with
Sounds). This array is converted into an image spectrumImage, which is passed to
the shader as texture2. Finally, the shader uses texture2 for affecting the process
of masking two input images texture0 and texture1.

As a result, we obtain an animated picture which gleams and pulsates accordingly
with the music beats:

Chapter 8

[231]

You might ask why we pass the sound spectrum into the
shader as a texture but not as a float array. The reason is simple;
using the float array will result in steps in an output image,
so some interpolation is needed for getting a smooth result.
Fortunately, GLSL performs smooth interpolation of textures,
so we just represent spectrum array as texture and delegate
interpolating to GLSL.

Until now, we have considered the basic capabilities of processing 2D images
with fragment shaders. Now let's look at the example of using a vertex shader
for deforming 3D objects.

Deforming objects with a vertex shader
A vertex shader processes each vertex of drawing objects and can change their
built-in attributes such as position, color, normal, and can also change any custom
attributes. Here, we consider the example of the vertex shader that just moves
vertices according to a rule with the help of parameters that are controlled by the
mouse position.

This is example 08-Shaders/06-VertexDeformation.

This example is based on the example given in the The triangles cloud example section
of Chapter 2, Drawing in 3D. The original example draws a rotated sphere-shaped
cloud of random triangles.

Vertex shader
In the bin/data folder, create a new text file shaderVert.c containing the
following code:

#version 120
#extension GL_ARB_texture_rectangle : enable
#extension GL_EXT_gpu_shader4 : enable

uniform float phase = 0.0; //Phase for "sin" function
uniform float distortAmount = 0.25; //Amount of distortion

void main() {
 //Get original position of the vertex

Using Shaders

[232]

 vec3 v = gl_Vertex.xyz;

 //Compute value of distortion for current vertex
 float distort = distortAmount * sin(phase + 0.015 * v.y);

 //Move the position
 v.x /= 1.0 + distort;
 v.y /= 1.0 + distort;
 v.z /= 1.0 + distort;

 //Set output vertex position
 vec4 posHomog = vec4(v, 1.0);
 gl_Position = gl_ModelViewProjectionMatrix * posHomog;

 //Set output texture coordinate and color in a standard way
 gl_TexCoord[0] = gl_MultiTexCoord0;
 gl_FrontColor = gl_Color;
}

This shader has two parameters, phase and distortAmount, which affect the phase
of a sine wave and the amount of distortion respectively. The main() function
transforms gl_Vertex using the phase and distortAmount parameters, and finally
writes the result to gl_Position (see details on these variables in the Structure of a
shader's code section).

The most notable thing here is the relation between variables gl_Vertex and
gl_Position having type vec4, and variable v having type vec3. The variables of
type vec4 are 3D vectors in homogeneous coordinates, where the last coordinate
just sets the scaling (which is most often equal to 1.0). In the example, we wish to
perform computations in ordinary 3D space, so we can truncate the last coordinate of
gl_Vertex and obtain v. We then perform all computations with v, and finally just
append to v the fourth coordinate (equal to 1.0) to obtain vec4 posHomog, which is
used for the final computation of gl_Position.

The last two lines of the main() function are as follows:

gl_TexCoord[0] = gl_MultiTexCoord0;
gl_FrontColor = gl_Color;

The lines the set texture coordinate (not needed in the example, but can be effective
for future use of the shader) and front color to the a standard values. See the A simple
fragment shader example section for details on these.

Chapter 8

[233]

Fragment shader
In the bin/data folder, create a new text file shaderFrag.c, which contains the
following code:

#version 120
#extension GL_ARB_texture_rectangle : enable
#extension GL_EXT_gpu_shader4 : enable

void main(){
 gl_FragColor = gl_Color;
}

This is a dummy fragment shader, which just writes the output color equal to the
gl_Color value (which is equal to the interpolated gl_FrontColor value from the
vertex shader).

Using vertex shader in our project
In the testApp.h file, in the testApp class declaration, add the shader object
declaration as follows:

ofShader shader; //Shader

At the end of the setup() function declaration, add the following line for
loading shaders:

shader.load("shaderVert.c", "shaderFrag.c");

Change the empty update() function with the following code:

float time0 = 0;
float phase = 0;
float distortAmount = 0;

void testApp::update(){
 //Compute dt
 float time = ofGetElapsedTimef();
 float dt = ofClamp(time - time0, 0, 0.1);
 time0 = time;

 float speed = ofMap(mouseY, 0, ofGetHeight(), 0, 5);
 phase += speed * dt;
 distortAmount = ofMap(mouseX, 0, ofGetWidth(), 0, 1.0);
}

Using Shaders

[234]

This function computes time step dt as a time difference between the current time
and time of previous calling of the update() function (see details in the Implementing
a particle in the project section in Chapter 3, Building a Simple Particle System). Next
it computes the phase and distortAmount parameters depending on the mouse
position. Note that the phase value changes steadily over time, so our shape
distortion will change with time.

In draw(), add the following lines before the //Draw the triangles line:

shader.begin(); //Enable the shader
shader.setUniform1f("phase", phase);
shader.setUniform1f("distortAmount", distortAmount);

This code enables the shader and sets its parameters.

Finally, add the line for disabling the shader just before the ofPopMatrix(); line:

shader.end(); //Disable the shader

Run the project and move the mouse. You will see how the sphere-like cloud will
deform depending on the mouse position. Namely, the mouse x-position sets the
amount of distortion and the mouse y-position sets the speed of wave-like fluctuations:

Now we will consider the example of using a geometry shader.

Chapter 8

[235]

Using a geometry shader
In the rendering pipeline, a geometry shader works between the vertex shader
and the fragment shader. It processes the groups of vertices that are organized in
primitives. The possible primitives are point (one vertex), line (two vertices), and
triangle (three vertices). Also, there are two new primitives, line with adjacent and
triangle with adjacent, which represent the line and the triangle with some additional
vertices providing adjacency information needed for computing the normals.

The geometry shader gets access to the input positions of the primitive's vertices
using a built-in array gl_PositionIn, which holds values of type vec4. These
positions are equal to the output values gl_Position generated by the vertex shader.

During its work, processing of the geometry shader should generate a number
of output vertices by setting some values to gl_Position, gl_FrontColor, and
other variables (similar to the vertex shader), and finally calling the EmitVertex()
function. This function tells OpenGL that the geometry shader has finished forming
values for the next vertex and rendered it.

The type of primitives rendered by the geometry shader is often different from its
input primitives' type. The output type can be a point, a line strip, or a triangle strip.
The last two types are strips, and so they can contain a different number of vertices.
To denote whether the geometry shader finished the strip primitive, it should call the
EndPrimitive() function. Then OpenGL finishes rendering the last primitive and is
ready to render a new one.

The "classical usage" of the geometry shader is in smoothing curves and surfaces
by subdividing (dividing each line segment or triangle on several primitives of
the same type). We will consider an example of more experimental usage of the
geometry shader.

The furry carpet example
Let's make a shader that replaces each passed line with a bunch of lines such that
these vertices' positions will be distorted using Perlin noise. We obtain a "furry"
collection of lines. Additionally, we set the color of each generated line as an average
color of a random image along this line. Finally, we will obtain a colored 2D "furry
carpet" with a picture resembling the original image.

This is example 08-Shaders/07-GeometryFurryCarpet.

Using Shaders

[236]

The example is based on the example given in the A simple fragment shader
example section. See the entire source code of the project in 08-Shaders/07-
GeometryFurryCarpet. Here we note just the example's key points:

A new file, shaderGeom.c, which contains the geometry shader is added there. It
takes the vertices' positions, and the input lines are as follows:

vec2 p0 = gl_PositionIn[0].xy;
vec2 p1 = gl_PositionIn[1].xy;

In the next step it generates 50 lines. Namely, it distorts the positions p0 and p1 by
Perlin noise and obtains distorted positions q0 and q1. At the next stage, the shader
computes the average color of the input image along the line segment [q0, q1].
Finally, it emits two corresponding vertices.

In the example the line of vertex shader code, which computes the output vertex
position (gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;) is
replaced by trivially passing original position of the output:

gl_Position = gl_Vertex;

The reason is that the geometry shader needs an unchanged vertex position for
computing, and finally makes a transformation with gl_ModelViewProjectionMatrix
by itself.

The body of the fragment shader's main() function consists of just one line, which
only passes the input color:

gl_FragColor = gl_Color;

In the openFrameworks's project, one line of the setup() function which loads the
shader is replaced with the following code:

shader.setGeometryInputType(GL_LINES);
shader.setGeometryOutputType(GL_LINE_STRIP);
shader.setGeometryOutputCount(128);
shader.load("shaderVert.c", "shaderFrag.c", "shaderGeom.c");

The first three lines set the geometry shader's parameters—its input and output
primitive types—and also the maximum possible number of output vertices. You
need to specify such parameters for the geometry shader before loading this. The
shader.load() function here contains three parameters with filenames for the
vertex, fragment, and geometry shader.

Instead of using the sunflower.png image, we are using the version with a
transparent background, sunflower-transp.png.

Chapter 8

[237]

Finally, in the draw() function, we enable shader and draw a number of vertical
lines. So each line passes through the vertex, geometry, and fragment shaders.
During processing by the geometry shader, the line is replaced with 50 lines that
are actually rendered on the screen. The important point here is that we do some
optimization, and do not render lines that lie in the transparent background.

Running the project, you will see a slow moving carpet resembling the original
sunflower image, as shown in the following screenshot:

Additional topics
In this chapter, we introduced very basic topics on shaders with the main
focus on 2D image processing. For further knowledge of shaders, we suggest
the following topics:

• 3D objects lighting using vertex and fragment shaders
• Working with attributes, which is a powerful way for propagating various

types of information from a vertex shader to a fragment shader.
• Ping-Pong FBO method, which is used for some computations with

the fragment shader, for example, particle physics simulation. See
the corresponding openFrameworks example in the examples/gl/
gpuParticleSystemExample folder.

Using Shaders

[238]

Summary
In this chapter, we covered the shaders, one of the most progressing areas of
computer graphics. We looked at examples of using the fragment, vertex, and
geometry shaders and ways to pass float numbers, float arrays, and images into
the shader. Also, we learned how to use Perlin noise in shaders.

This is the last topic on the media capabilities of openFrameworks. In the next
chapter, we will consider how to use a computer vision based on the OpenCV
library in openFrameworks projects.

Computer Vision
with OpenCV

In this chapter, we will learn how to use computer vision algorithms for performing
advanced video analysis and processing using the ofxOpenCv addon and the
OpenCV library. You will learn how to work with the addon's class of images and
perform filtering, geometrical transformations of images, and find contours of the
objects in the image. Finally, we will consider how to use native OpenCV functions
in an example and also learn to use optical flow. We will cover the following topics:

• Using ofxOpenCv
• Motion detection
• Image filtering
• Geometrical transformations of images
• Searching for objects in an image
• Optical flow
• Video morphing

Computer Vision with OpenCV

[240]

Understanding computer vision and
OpenCV
Computer vision is a wide scientific field between mathematics and computer
sciences. Its primary goal is to build automatic methods for understanding the
content of images. This goal is difficult to achieve; however, we already have a lot
of great algorithms, including image enhancement and correction, object detection,
tracking and recognition, stereo vision, and automatic machine learning.

You will find that many of the algorithms such as image filtering and object tracking
are common for computer vision and video processing. The reason is that some basic
procedures are common while dealing with images. The difference is in the goal.
The goal of computer vision is automatic analysis of images from the cameras used
for controlling machines; for example, robots, or interactive installations. The goal
of video processing is in creating video and video effects for spectators to watch.

If you want to use existing computer vision methods, a good choice is Open
Computer Vision (OpenCV) library. It contains hundreds of classic and newest
algorithms for image processing and analysis. Currently, the library is going through
the standardization stage by Khronos Group (khronos.org), and it will be standard
like OpenGL and OpenCL soon.

Though OpenCV works with stereo vision and has functions for
transforming 3D point clouds, it's mainly focused on working with
two-dimensional images obtained from cameras. So, for processing
and analyzing 3D point clouds that are obtained from depth cameras,
you should use your own algorithms. Also, you can use the PCL
library, which is a special library for working with 3D point clouds.
However, note that this is outside the scope of this book.
OpenCV has distinct functions for working with CPU and GPU. We
will only consider the CPU functions because these are simpler to
learn. Always remember that OpenCV functions are highly optimized
so they always work faster than your own pixel-by-pixel algorithms.
However, CPU functions are not fast enough for processing big
images such as Full HD frames in real time. For such purposes, you
need to use GPU. If you need just image processing with some video
effects, you may use the shaders technology without OpenCV at
all because using shaders is normally simpler and more universal.
However, when real computer vision stuff is needed, then use
OpenCV's GPU functions.

Chapter 9

[241]

The way to start linking OpenCV to the openFrameworks project is to use the
ofxOpenCv addon. It also adds a number of classes which simplify the common
tasks of image processing and tracking. Most of this chapter will be devoted to
ofxOpenCv and only the last section Using OpenCV functions will be devoted to
using OpenCV functions directly.

Normally, the ofxOpenCv addon is quite fresh and stable, but it's not
the latest version of OpenCV. If for some reason you need the latest one,
download OpenCV from its site and link it to your project. Note, this
procedure demands some experience of working with libraries.

Using ofxOpenCv
The most straightforward way to use the ofxOpenCv addon in your project is to
start a new project based on the example of the ofxOpenCv usage. To do so, copy
the examples/addons/opencvExample folder to the folder with your projects
(for example, apps/myApps) and rename it (for example, to myCompVision).

The second way is to generate a new project using the Project Generator wizard
included in openFrameworks. It lets you select which addons to link to the project and
then creates a new empty project that includes the required addons. In our case, you
need to include ofxOpenCv. See Appendix A, Working with Addons, for more details.

When the project has been copied or generated, you need to include the addon's
header into your testApp.h file, just after the #include "ofMain.h" line:

#include "ofMain.h"
#include "ofxOpenCv.h"

The ofxOpenCv addon is a collection of classes. The classes' names begin with ofxCV.
There are two groups of classes: the image classes and the algorithm classes.

Image classes contain images of different types and additionally have a set of
functions for image processing performed by OpenCV:

• The ofxCvColorImage class represents the three-channel (red, green, and
blue) color images with color components of the type unsigned char.
These images are obtained from cameras.

• The ofxCvGrayscaleImage class represents grayscale, one-channel
images with pixel values of the type unsigned char. These images are
used for internal processing such as thresholding and contour finding,
and as a class for working with binary images that contain only two pixel
values (0 and 255).

Computer Vision with OpenCV

[242]

• The ofxCvFloatImage class represents grayscale, one-channel images
with pixel values of the type float. It is used in situations when accurate
calculations are needed; for example, special filters for smoothing and
Fourier transform.

• The ofxCvShortImage class represents grayscale, one-channel images with
pixel values of the type unsigned short int. So the range of the pixel value
is from 0 to 65,535. Such images are obtained from depth cameras where the
pixel value means the corresponding distance in millimeters.

• The ofxCvImage class is a base class for all the preceding image classes. It
contains declarations of most of the functions for image processing so you
can explore them. Note, you should not declare objects of this class directly
because it has a number of abstract functions, that is, functions which are
declared but not defined. So, calling this class with an object of the class
ofxCvImage causes an execution error.

Currently, there are no implemented three-channel float-type and
unsigned short-type images, and no four-channel (red, green, blue,
and alpha) image types.

Algorithm classes implement a couple of computer vision algorithms, which are
as follows:

• The ofxCvContourFinder class finds bounding contours that connect
the white regions in the input binary image. Such a class can be used for
searching objects. See details in the Using class ofxCvContourFinder for finding
contours section.

• The ofxCvHaarFinder class implements the Viola-Jones method of
searching objects on the image using Haar-like features and a machine
learning method calling Boosting. This method works especially well
for searching frontal human faces of different sizes on an image. See
openFrameworks example of searching faces in examples/addons/
opencvHaarFinderExample.

Now we will take a look at the image classes and image processing in greater detail.

Chapter 9

[243]

Working with ofxCv images
The main object of computer vision is the image. So before diving into image
processing and analysis, we should learn how to work with OpenCV-related images
freely. We will consider images of classes ofxCvColorImage, ofxCvGrayscaleImage,
ofxCvFloatImage, and ofxCvShortImage. These class names have the prefix ofxCv,
so we will call them ofxCv images. To be precise, we will assume that we have these
image objects:

ofxCvColorImage image, image2; //Color images
ofxCvGrayscaleImage grayImage, grayImage2; //Grayscale images
ofxCvFloatImage floatImage; //Float-type image
ofxCvShortImage shortImage; //Image with "unsigned short" pixels

It is convenient to group functions and operations into several groups.

Image initializing
You always need to initialize an image before using it for the first time. Let us look at
a few functions used to initialize images:

• The allocate(w, h) function initializes the image with width w and
height h pixels; for example, image.allocate(320, 240) creates an
image with size 320 × 240 pixels.

Note, the values of pixels can be nonzero values after initialization,
so if you need to set its initial values, use the set(value)
function (see the description given at the end of this section).

• The = operator copies images of equal or different types and performs the
necessary pixel conversions; for example:

 ° image2 = image; copies image to image2. Note that there is no need
to initialize image2 using image2.allocate(w, h) because =
initializes it automatically.

 ° grayImage = image; converts a color image to a grayscale image
 ° floatImage = grayScale; converts a grayscale image to a

float image

Computer Vision with OpenCV

[244]

The important thing here is initialization. If destination image was not
initialized, the = operator performs the required initialization automatically.
However, if the image was initialized, it must have a size equal to the size
of the source image. In opposite cases, you should clear the image using the
clear() function, or set a prerequisite size using the resize() function.

During image type conversion, the range of pixel values is
transforming correspondingly with the range of the image class. The
range for ofxCvColorImage and ofxCvGrayscaleImage is from
0 to 255, while that for ofxCvFloatImage is segment [0, 1], and the
range for ofxCvShortImage is from 0 to 65535.
For example, during the floatImage = grayImage operation, the
assigned pixel values of floatImage are equal to the pixel values of
grayImage image multiplied by 1.0 / 255.0. So, the pixel values
of floatImage will lie in [0, 1]. Similarly, during the grayImage
= shortImage operation, the assigned pixel values of grayImage
are equal to the pixel values of the shortImage image multiplied by
255.0 / 65535.0.
You can change the range of ofxCvFloatImage to any value using
the setNativeScale(vMin, vMax) function; for example,
floatImage.setNativeScale(0.0, 255.0) sets the range to
[0, 255].

• The setFromPixels(data, w, h) function sets image dimensions
to w × h pixels and sets its pixel values to the values from an unsigned
char array data. Note that the size of the data array should be equal to
w × h × 3 for ofxCvColorImage and w × h for other types. There is an
alternative form, setFromPixels(pixels), with pixels having the
type ofPixels; for example, if you are getting video frames from a camera
using the object ofVideoGrabber grabber (see the Processing a live video from
camera section in Chapter 5, Working with Videos), you can initialize an image
in the following way:
image.setFromPixels(grabber.getPixelsRef());

• For float images, there is an overloaded function for setting its pixels from
an array of floats which is known as setFromPixels(dataFloat, w, h)
where dataFloat is the array of floats.

Chapter 9

[245]

• In order to check whether the image was allocated, use the bAllocated
member, which has the type bool as shown in the following code:
if (image.bAllocated) {
 //...
}

There are two functions that are close to the initialization stage:

• The set(value) function sets all the image pixels to the value value.
For color images, there is also a function set(valueRed, valueGreen,
valueBlue), that sets each pixel of red, green, and blue color components to
valueRed, valueGreen, and valueBlue respectively.

• The clear() function clears all the memory allocated for an image. Usually,
you don't need to use this function because it is called automatically by the
image's destructor.

Algebraic operations with images
Algebraic operations apply mathematical operations such as addition and
subtraction to each pixel of the images. The following are a few algebraic functions:

• The +=, -=, and *= operations with an operand of the ofxCV image type
are operations that are applicable for images of an equal size and type. The
operations do the corresponding operation on the corresponding pixels of the
both images; for example, image += image2 adds image2 to image.

Currently the *= operation divides the operand on 255.0
for all images except ofxCvFloatImage.

• The += , -=, *=, and /= operations with the float operand argument value
perform addition, subtraction, multiplication, and division respectively
on all pixel values in the image with the value specified in the value
variable; for example, image += 1 adds 1 to the image's pixel values. The
*= and /= operations are currently only available for float images of the class
ofxCvFloatImage.

Computer Vision with OpenCV

[246]

Currently, the *= operation truncates negative pixel values to
zero. So do not use this operation when you need to work with
negative pixel values during intermediate operations. So, instead
of floatImage *= value, call the multiplyByScalar(
floatImage, value) function, where the function's code is as
follows:

void multiplyByScalar(ofxCvFloatImage &floatImage,
 float value){
 int w = floatImage.width;
 int h = floatImage.height;
 float *floatPixels =
 floatImage.getPixelsAsFloats();
 for (int y=0; y<h; y++) {
 for (int x=0; x<w; x++) {
 //Change pixels values
 floatPixels[x + w * y] *= value;
 }
 }
 //Notify openFrameworks that
 //the image was changed
 floatImage.flagImageChanged();
}

• The grayImage.absDiff(grayImage2) function calculates the absolute
difference value between the corresponding pixels of grayImage and
grayImage2 and writes the result to grayImage. There is an overloaded
grayImage.absDiff(grayImageA, grayImageB) function, which puts
the result of the absolute difference between grayImageA and grayImageB to
grayImage. Though this is not formally an algebraic operation, it is obviously
related to them. The function is useful for marking the regions where the
two given images differ. Note, the absDiff function is currently available for
grayscale images only.

All the image types except ofxCvFloatImage have a limited range of pixel values
(see the discussion of ranges in the preceding information box for the operator =).
In the case when the result of any operation goes beyond the range, the saturation
arithmetic is applied, that is, the value is truncated to the range. For example, for
an image of type ofxCvGrayscaleImage, the values 300 and -10 will be truncated to
255 and 0 respectively. Hence, if you perform advanced mathematical calculations
with images, it is a good idea to convert input images to ofxCvFloatImage first, then
perform calculations, and finally convert the final result to the required type.

Chapter 9

[247]

Drawing functions
The drawing functions are similar to the corresponding functions of the ofImage
class for openFrameworks' images, discussed in Chapter 4, Images and Textures. The
following are a few drawing functions:

• The draw(x, y, w, h) function draws the image to the screen. Note, for
images of classes ofxCvFloatImage and ofxCvShortImage, the pixel values
are mapped from the corresponding ranges [0, 1] and 0 to 65,535 to the
range 0 to 255 for screen output. The range for a float image can be changed
using the setNativeScale(vMin, vMax) function. There are overloaded
versions: draw(x, y), draw(point), and draw(rect) with point of
type ofPoint and rect of type ofRectangle.

• The setAnchorPercent(xPct, yPct), setAnchorPoint(x, y), and
resetAnchor() functions let us control the origin of the output image, just
like in ofImage.

• The setUseTexture(use) function with use of the type bool enables
or disables using texture for the image. This texture is automatically
recalculated only before the image drawing. If the image is used only
for internal calculations and will never be shown on the screen, call
setUseTexture(false) for saving the video memory.

• The getTextureReference() function returns the reference on the
ofTexture object of the image. If you change the image and need its texture,
you need to call updateTexture() before getting the texture reference.

Access to pixels
For implementing custom image processing functions or using OpenCV functions
not implemented in the ofxOpenCv addon, you need to have access to the pixel
values and OpenCV image inside the ofxCv image. There are number of functions
for dealing with it:

• The width and height values can be used for getting the current size
of the image.

• The getPixels() function returns an array of unsigned char values,
corresponding with the image's values. For ofxCvFloatImage and
ofxCvShortImage images, the pixel's values are mapped to 0 to 255 range,
as in the draw() function described earlier.

• The getPixelsRef() function returns a reference to a pixel array of the
current frame represented by a class ofPixels.

Computer Vision with OpenCV

[248]

Note that currently the name of the function differs from
the name of the corresponding function in the ofImage
class where it is called getPixelRef().

• The getPixelsAsFloats() and getFloatPixelsRef() functions
respectively return an array of floats and reference to ofFloatPixels
for images of class ofxCvFloatImage.

• The getShortPixelsRef() function returns a reference to ofShortPixels
for images of class ofxCvShortImage.

• The getCvImage() function returns a pointer to an object of type IplImage.
This is an OpenCV type used for holding an image. The function is used for
applying any OpenCV operations to the images directly. Normally, you will
use this function for those OpenCV capabilities that are not implemented in
the ofxOpenCv addon.

• If you make some modification in the pixel values of the image or its
IplImage object, you need to call flagImageChanged() to notify the
ofxOpenCv addon that the image was changed. If you need a texture
reference to the image, you should call updateTexture(). Note, when
calling image.draw(), the texture updates automatically, if needed.

Working with color planes and color spaces
conversion
There are a number of functions for manipulating color planes. They are as follows:

• The image.setFromGrayscalePlanarImages(planeR, planeG,
planeB) function creates a color image with color planes from three
ofxCvGrayscaleImage images, planeR, planeG, and planeB. These
images planeR, planeG, and planeB should be allocated before calling
setFromGrayscalePlanarImages().

• The image.convertToGrayscalePlanarImages(planeR, planeG,
planeB) function does the opposite. It splits an image into its color planes,
and writes them to planeR, planeG, and planeB. Note, currently image
should be allocated before calling convertToGrayscalePlanarImages().

• The image.convertToGrayscalePlanarImage(grayImage, index)
function extracts the color plane number index from an image and writes it
into grayImage. Here index = 0, 1, and 2 corresponds to red, green and blue
color components respectively, and grayImage does not need to be allocated
before calling convertToGrayscalePlanarImage().

Chapter 9

[249]

The class ofxCvColorImage has two functions for converting between RGB (Red,
Green, Blue) and HSV (Hue, Saturation, Value) color spaces: convertRgbToHsv()
and convertHsvToRgb().

Now we will consider an example of using ofxCv images for a simple motion detector.

Motion detection from movies
Let's consider a live video from the camera or a video from a movie, and consider
the absolute difference between its two successive frames, which is computed using
the function grayImage.absDiff(grayImage2), considered in the Algebraic
operations with images section. The regions in this difference image, corresponding
to the moving objects, will have higher values than the static regions. So, for getting
pixels with high values, it is possible to detect the regions of motion in the video.
This information can be used for controlling the behavior of your application; for
example, if you have a particle system, the motion areas can be used as places of
particles' emitting or as areas of particles' attraction. Then, people walking in front of
your camera will see how their silhouette controls the particles on the screen.

This method of using difference image is simple and has been successfully used in
a number of interactive projects for more than thirty years now. However, if you
consider two successive difference images, they will most likely have very few
common pixels with high values. The reason is that difference image emphasizes
the changed pixels of successive frames, or in another words, "motion border",
which changes each frame. So difference image is not stable in time. To regularize
it, it is a good idea to accumulate the differences in an image buffer that slowly
decreases its values.

The following example illustrates the calculation of absolute differences and
accumulation of them in the buffer using ofxCv images of the ofxOpenCv addon.

This is example 09-OpenCV/01-MotionDetection.

Use the Project Generator for creating an empty project with the linked ofxOpenCv
addon (see the Using ofxOpenCv section). Then, copy the handsTrees.mov movies
into the bin/data folder of the project.

Include the addon's header into the testApp.h file, just after the #include
"ofMain.h" line:

#include "ofMain.h"
#include "ofxOpenCv.h"

Computer Vision with OpenCV

[250]

Also, add the following lines in the testApp class declaration:

ofVideoPlayer video; //Declare the video player object

ofxCvColorImage image; //The current video frame

//The current and the previous video frames as grayscale images
ofxCvGrayscaleImage grayImage, grayImagePrev;

ofxCvGrayscaleImage diff; //Absolute difference of the frames
ofxCvFloatImage diffFloat; //Amplified difference images
ofxCvFloatImage bufferFloat; //Buffer image

Now let's assemble testApp.cpp. The testApp::setup() function loads and starts
the video as follows:

void testApp::setup(){
 video.loadMovie("handsTrees.mov"); //Load the video file
 video.play(); //Start the video to play
}

The testApp::update() function reads video frames and processes them by
calculating the absolute difference diff, amplifying it for better visibility in
diffFloat, and then updating the accumulate buffer bufferFloat. Note,
we check the fact that an image is initialized using the bAllocated value:

void testApp::update(){
 video.update(); //Decode the new frame if needed
 //Do computing only if the new frame was obtained
 if (video.isFrameNew()) {
 //Store the previous frame, if it exists till now
 if (grayImage.bAllocated) {
 grayImagePrev = grayImage;
 }

 //Getting a new frame
 image.setFromPixels(video.getPixelsRef());
 grayImage = image; //Convert to grayscale image

 //Do processing if grayImagePrev is inited
 if (grayImagePrev.bAllocated) {
 //Get absolute difference
 diff.absDiff(grayImage, grayImagePrev);

 //We want to amplify the difference to obtain
 //better visibility of motion

Chapter 9

[251]

 //We do it by multiplication. But to do it, we
 //need to convert diff to float image first
 diffFloat = diff; //Convert to float image
 diffFloat *= 5.0; //Amplify the pixel values

 //Update the accumulation buffer
 if (!bufferFloat.bAllocated) {
 //If the buffer is not initialized, then
 //just set it equal to diffFloat
 bufferFloat = diffFloat;
 }
 else {
 //Slow damping the buffer to zero
 bufferFloat *= 0.85;
 //Add current difference image to the buffer
 bufferFloat += diffFloat;
 }
 }
 }
}

Finally, the testApp::draw() function draws four images (from left to right and
from top to bottom). These four images are as follows:

• The current frame as the grayscale image grayImage.
• The diffFloat image, which is the absolute difference of the current and the

previous frames amplified for better visibility.
• The accumulated buffer image bufferFloat.
• Finally, it draws the motion areas as black pixels on a white image. The pixels

of motion calculate right in the draw() function. The pixel is regarded as a
motion pixel if its value in bufferFloat exceeds the threshold value 0.9.

You can calculate motion areas in the update() function,
use it for controlling particles, and so on. We do it in the draw
function just for the code's simplicity.

Let's take a look at the code:

void testApp::draw(){
 ofBackground(255, 255, 255); //Set the background color

 //Draw only if diffFloat image is ready.
 //It happens when the second frame from the video is obtained

Computer Vision with OpenCV

[252]

 if (diffFloat.bAllocated) {
 //Get image dimensions
 int w = grayImage.width;
 int h = grayImage.height;

 //Set color for images drawing
 ofSetColor(255, 255, 255);

 //Draw images grayImage, diffFloat, bufferFloat
 grayImage.draw(0, 0, w/2, h/2);
 diffFloat.draw(w/2 + 10, 0, w/2, h/2);
 bufferFloat.draw(0, h/2 + 10, w/2, h/2);

 //Draw the image motion areas

 //Shift and scale the coordinate system
 ofPushMatrix();
 ofTranslate(w/2+10, h/2+10);
 ofScale(0.5, 0.5);

 //Draw bounding rectangle
 ofSetColor(0, 0, 0);
 ofNoFill();
 ofRect(-1, -1, w+2, h+2);

 //Get bufferFloat pixels
 float *pixels = bufferFloat.getPixelsAsFloats();
 //Scan all pixels
 for (int y=0; y<h; y++) {
 for (int x=0; x<w; x++) {
 //Get the pixel value
 float value = pixels[x + w * y];
 //If value exceed threshold, then draw pixel
 if (value >= 0.9) {
 ofRect(x, y, 1, 1);
 //Rectangle with size 1x1 means pixel
 //Note, this is slow function,
 //we use it here just for simplicity
 }
 }
 }
 ofPopMatrix(); //Restore the coordinate system
 }
}

Chapter 9

[253]

Run the example. You will see an animation consisting of four images on the
screen: the current movie frame in grayscale, absolute difference of the current
and the previous frame, the accumulated buffer, and finally, the motion areas
shown in black color:

The video in the example has a frame size of 640 x 480 pixels
so its processing consumes a lot of CPU resources. So, run
the example in the Release mode for smooth video playing.

You can observe that all the operations in the example can be done using
pixel-by-pixel processing, described in Chapter 5, Working with Videos. So, why
use complicated stuff like OpenCV? The answer is that although the example
is very simple, when you do more complicated image processing and then use
pixel-by-pixel programming, it makes the code cumbersome. When using
OpenCV, you can do most of the image operations with a single line of code.
Also, OpenCV uses various optimizations, so using it usually improves the
performance of your project.

Now we will consider the control parameters of the motion detection algorithm.

Computer Vision with OpenCV

[254]

Discussing the algorithm's parameters
There are three parameters of the motion detection algorithm:

• The amplification parameter 5.0 is in the following line of the
update() function:
diffFloat *= 5.0; //Amplify pixel values

Change the parameter to 1.0 and 10.0 to see the decrease and increase in the
brightness of the second image. (Note that the parameter affects the third and
fourth image as well).

• The buffer damping parameter 0.85 is in the following line of the
update() function:
bufferFloat *= 0.85;

Increase or decrease the parameter for slower or faster damping
correspondingly; for example, change the parameter value to 0.8 and
0.95 to see results on the third image. (Note, the parameter affects the
fourth image too).

• The threshold parameter 0.9 for motion area detection is in the following
line of the draw() function:
if (value >= 0.9) {

Increasing or decreasing the value leads to a corresponding decrease
or increase in the sensitivity of the algorithm, that is, the detected area
becomes larger or smaller correspondingly. Try to change the parameter
to 0.3 and 2.0 and see the result on the fourth image.

The second and third images on the screen are the result of drawing float-valued
images diffFloat and bufferFloat. As we discussed earlier, pixel values of
these images are mapped from the range [0, 1] to 0 to 255 while drawing. So, all the
pixel values greater than 1.0 are rendered in white color. In our case, pixels of the
bufferFloat image can have values greater than 1.0, so its image on the screen is
clamped in the sense of color representation. To reduce the color clamping on the
screen, decrease the amplification parameter.

Motion detection from live video
It is easy to change the previous example to search motion areas in a live video from
a camera. That is, find the following line in testApp.h:

ofVideoPlayer video; //Declare the video player object

Chapter 9

[255]

Replace the preceding line with the following:

ofVideoGrabber video; //Video grabber from the camera

Now, find the following lines in testApp.cpp in the testApp::setup() function:

 video.loadMovie("handsTrees.mov"); //Load the video file
 video.play(); //Start the video to play

Replace the preceding lines with the following:

 video.initGrabber(640, 480); //Start the video grabber

For details on capturing images from cameras, see the
Processing a live video from the camera section in Chapter 5,
Working with Videos.

When you run the example with a live video, you will possibly find that the
motion has not tracked so well as in the prerecorded video handsTrees.mov.
In this case, you need to adjust the algorithm's parameters, see the Discussing
the algorithm's parameters section.

We have considered the algorithm of motion detection, which is great for learning
the basics of computer vision and making simple interactive installations. Though,
it has a drawback in that you need to adjust its parameters depending on the light
conditions. Also, the result of detection depends on the colors of the objects.

There are several ways to avoid this problem:

• Add an additional automatic algorithm for adjusting parameters.
• Use another advanced background detection algorithm. OpenCV has some

implemented algorithms. See OpenCV example c/bgfg_segm.cpp (you can
find the example in OpenCV's Github repository). Currently, this algorithm
is not integrated in openFrameworks, so you need to adopt the code in your
project on your own.

• Use optical flow analysis for detecting motion areas, see the Optical
flow section.

• Use a depth camera. This is the most robust and simple solution (but it only
works indoors because of the limitations of cheap depth cameras). A depth
camera will provide you with a depth information in each pixel. Hence, you
will be able to detect the motion of physical objects as areas with fast depth
change. See Chapter 10, Using Depth Cameras, for details.

Now we will consider the methods of image filtering, which include smoothing and
other essential image processing operations.

Computer Vision with OpenCV

[256]

Image filtering
Image filtering means the processing of images using a filter. The term filter in
computer vision usually means pixel values modification, which for the given pixel
depends only on the pixel values in the neighborhood of the pixel and is independent
of the pixel's position. The simplest filters are pixel operations, which transform each
pixel value using a rule; for example, the multiplication of each image's pixel with
some scalar value. So, += value, -= value, *= value and set(value) functions,
discussed in the Working with ofxCv images section, are pixel operations.

The ofxCv images contain the following filtering functions and pixel operations:

• The blur(winSize) function is a smoothing filter that averages the pixel
values in a square window around the given pixel with size winSize ×
winSize pixels. Here, winSize must be an odd integer (that is winSize is
equal to 2*rad+1 for some integer rad). Increasing the winSize parameter
leads to more smoothing. This filter is very fast and gives a smoothing result
of moderate quality.

• The blurGaussian(winSize) function is a smoothing filter that uses
the Gaussian weight function for averaging. The window size is winSize
× winSize pixels and winSize must be an odd integer. This filter is more
accurate than blur (because blur adds artifacts such as moire due to its
square averaging). However, blurGaussian() is more CPU-expensive.
If you wish to compare the results of blur and blurGaussian(), you
should use different window sizes. The size in blurGaussian() should
be greater than blur() by at least twice; for example, blur(11) and
blurGaussian(21).

• The erode() function is a minimizing filter that sets the minimal value
to a pixel from a square window of 3 × 3 pixels. This operation is called
morphological erosion. It is often used for binary images where it is used
for removing small noisy white areas.

• The dilate() function is a maximizing filter that sets the maximal value
to a pixel from a square window of 3 × 3 pixels. This operation is called
morphological dilation. It is often used for binary images where it is
used for filling small holes in the white areas.

Chapter 9

[257]

• The convertToRange(minValue, maxValue) pixel operation maps pixel
values from the range of the image class to the [minValue, maxValue] range.
It is very useful for any linear transformation of pixel values; for example,
floatImage.convertToRange(0.5, 1.5) maps the pixel values from
the range [0, 1] to the range [0.5, 1.5] so it acts on pixel values by formula
value = 0.5 + value * (1.5 - 0.5).

• The invert() function is a pixel operation that inverts every bit of the pixel
value. It is useful for images of the type ofxCvGrayscaleImage where it
acts by the formula value that equals 255-value, and so it transforms the
pixel value from 0 to 255 and 255 to 0. Such an operation can be done using
grayImage.convertToRange(255, 0) but invert() works faster.

• The ofxCvGrayscaleImage class has a very important pixel operation of
thresholding threshold(threshValue). It sets the pixel value to 255 for
each pixel if its value is not less than threshValue or 0. Otherwise, there is the
second optional parameter in the function, doInvert of the type bool. When
it is true, that is threshold(threshValue, true), the result is inverted.

• Use of the threshold() function is a crucial step in many computer vision
processing algorithms because it converts a grayscale halftone image to a
binary image. These binary images are then used for detecting, recognizing,
and measuring objects such as human fingers and objects on a table. The
reason for this is that binary images are simple objects used for performing
shape analysis, area and perimeter calculation, and other things. See the
example in the An example for searching bright objects in video section.

Now we will consider examples of using filtering.

The image filtering example
Gaussian smoothing is probably the most used filter in computer vision because this
filter optimally suppresses random noise in the image for the corresponding filter
window size. Additionally, because smoothing gives a smoothed image, it is better
suited for further processing such as binarization.

We will consider an example that demonstrates a smoothing effect using the
Gaussian filter. You will see and compare the thresholded original image and
the thresholded smoothed image.

This is example 09-OpenCV/02-ImageFiltering.

Computer Vision with OpenCV

[258]

Use the Project Generator wizard for creating an empty project with the
linked ofxOpenCv addon (see the Using ofxOpenCv section). Then, copy
the sunflower.png image into bin/data of the project.

In the testApp.h file, add a line that includes the addon's header just after the
#include "ofMain.h" line:

#include "ofMain.h"
#include "ofxOpenCv.h"

Add the following members to the testApp class declaration:

ofxCvColorImage image; //Original image
ofxCvGrayscaleImage grayImage; //Grayscaled original image
ofxCvGrayscaleImage filtered; //Image used for filtering

In testApp.cpp, the setup() function loads an image from the file, copies it to the
color image image, and creates its grayscaled copy grayImage. Note that for loading
the image from the file, we use a temporary object imageOf as follows:

void testApp::setup(){
 ofImage imageOf; //Temporary image for loading from the file
 imageOf.loadImage("sunflower.png"); //Load image from
 //the file

 //Set image pixels
 image.setFromPixels(imageOf.getPixelsRef());

 //Convert to a grayscale image
 grayImage = image;
}

To obtain a shorter code, we perform the all image processing steps right in draw()
and directly draw its results on the screen using just one filtered image. A more
accurate approach is to declare a separate image for each image we want draw,
and then process it once in update(). Also, in the example, the input image has not
changed so we can do the processing right in setup(). So, the update() function is
empty here, and the draw() function does all the image processing:

void testApp::draw(){
 ofBackground(128, 128, 128); //Set the background color

 //Get image dimensions
 int w = image.width;
 int h = image.height;

Chapter 9

[259]

 ofSetColor(255, 255, 255); //Set a color for images drawing

 //Draw original image
 grayImage.draw(0, 0, w, h);

 //Thresholding original image
 filtered = grayImage; //Copy the image
 filtered.threshold(128); //Thresholding original image
 //using thresold 128
 filtered.draw(w+10, 0, w, h); //Draw

 //Smoothing original image
 filtered = grayImage; //Copy the image
 filtered.blurGaussian(9); //Gaussian blurring
 //with window size 9x9
 filtered.draw(0, h+10, w, h); //Draw

 //Thresholding smoothed image
 filtered.threshold(128); //Thresholding smoothed image
 //using thresold 128
 filtered.draw(w+10, h+10, w, h); //Draw
}

Run the example and you will see four images:

Computer Vision with OpenCV

[260]

Note that the Thresholded smoothed image has more smooth contours.

Here are two parameters of the algorithm:

• The size of the smoothing window that is equal to 9 as shown in the
following line:
filtered.blurGaussian(9);

• The threshold value that is equal to 128 as outlined in the following
two lines:
filtered.threshold(128); //Thresholding original image
...
filtered.threshold(128); //Thresholding smoothed image

Adjust these parameters and watch how the smoothness of the contours and
the overall number of white pixels change. Now we will consider geometrical
transformation of images.

Geometrical transformations of images
Here we consider the different kinds of geometrical transformations that change the
position of the image's pixel. OpenCV does operations such as image resizing and
warping using interpolation that suppress the aliasing effect. Hence, using OpenCV
operations is more preferable than custom pixel-by-pixel implementation, except
when you implement your own transformation algorithm with antialiasing (which
can be tricky), or maybe when you need the aliasing effect. The following is a list of
geometrical transformations that are applicable to ofxCv images:

• The resize(w, h) function changes the image size to w × h pixels.
For example:
image2 = image;
image2.resize(image2.width * 0.5, image2.height * 0.5);

This code transforms image to image2 with a size that equals 50 percent
of the size of image. Such a procedure decreases the number of pixels
four times, so the speed of processing increases 4 times. However, object
localization accuracy in x and y axes decreases only twice.
So, input image decimation lets you adjust the balance between the speed
and the accuracy of your computer vision algorithm. Hence, if your
algorithm works too slowly and the accuracy is not very important, try to
decimate the input image.

Chapter 9

[261]

• The scaleIntoMe(mom, interpolationMethod) function is an advanced
resizing function. It scales the content of the mom image into the image calling
the function and additionally lets you choose an interpolation method by
using the interpolationMethod parameter. Its possible values are:

 ° CV_INTER_LINEAR – This method is used for the bilinear
interpolation of pixel values. This method is fast and moderately
qualitative. It is used by default in all other functions that deal with
resizing and warping.

 ° CV_INTER_AREA – This method is used for interpolation using the
pixel area relation. It gives the highest quality when it performs
image decimation, though it works slower than CV_INTER_LINEAR.
Note, it does not work well for image zooming, just as CV_INTER_NN.

 ° CV_INTER_NN – This method is used for resizing using the "nearest
neighbor" rule. It just selects the nearest pixel and hence does not
perform interpolation at all. It is the fastest method but gives poor
quality. It is useful for the pixelization effect.

 ° CV_INTER_CUBIC – This method uses cubic splines for interpolation.
It works well for image zooming. Compared to CV_INTER_LINEAR, it
gives sharper edges and is slower.

Note, you need to allocate the image before calling scaleIntoMe().

• The scale(scaleX, scaleY) function resizes the content of the image
proportionally to scaleX and scaleY. If both parameters are equal to 1.0,
the image will not change.

• The mirror(flipY, flipX) function flips the image vertically or
horizontally if flipY or flipX equals true respectively.

• The translate(shiftX, shiftY) function shifts the image at shiftX
along the x axis and at shiftY along the y axis where shiftX and shiftY are
of the type float. This function works with subpixel quality. Free space in
the image is filled with black color.

• The rotate(angle, centerX, centerY) function rotates the image
counterclockwise at angle (measured in degrees) and around the position
(centerX, centerY). All the parameters are float. For example, if you need to
rotate image at 45 degrees around its center, use the following function calling:
image.rotate(45, image.width/2, image.height/2);

Free space in the image is filled with black color.

Computer Vision with OpenCV

[262]

• The transform(angle, centerX, centerY, scaleX, scaleY, moveX,
moveY) function is used for making several transformations such as scaling
the image, rotating it, and then moving it.

• The undistort(radialDistX, radialDistY, tangentDistX,
tangentDistY, focalX, focalY, centerX, centerY) function is
a crucial function for correcting camera distortions such as fish-eye. The
camera calibration technique is outside the scope of this book. But you can
play with parameters for obtaining "rubber" image distortions; for example,
if you wish to apply such transformations to the sunflower.png image, try
the following function calls:
image.undistort(0, 1, 0, 0, 200, 200, w/2, h/2);
image.undistort(0, 1, 0.0, 0.2, 200, 200, w/2, h/2);
image.undistort(-0.5, 1, 0.2, 0.1, 2000, 150, w/2, h/2);

After applying the preceding transformations, you will obtain the
following results:

• The warpPerspective(A, B, C, D) function performs perspective
transform in such a way that points A, B, C, and D map to the corresponding
corners of the image, that is, top-left, top-right, bottom-right, and bottom-left
respectively. The points A, B, C, and D are of the ofPoint type. This function
is exceptionally useful for correcting images of rectangular flat surfaces
that were obtained from a tilted camera. See the example in the Perspective
distortion removing example section.

Chapter 9

[263]

• The warpIntoMe(mom, srcPoints, dstPoints) function is an advanced
version of the warpPerspective() function. It performs perspective warping
of the mom image into the image by calling this function so that points
srcPoints map to points dstPoints. Here srcPoints and dstPoints are
point arrays that are ofPoint src[4] and dst[4] respectively.

• The remap(mapX, mapY) function lets you perform arbitrary image
warping with float images mapX and mapY so that the resulted value for
pixel (x, y) is taken from the pixel with coordinates (mapX(x, y), mapY(
x, y)). Note, mapX and mapY are pointers to OpenCV images of the type
IplImage*. This function is useful for various nonlinear image deformations.
See the Video morphing example section for more details.

Perspective distortion removing example
Perspective distortion is a geometrical distortion of an object's shape when captured
by the camera so that the straight or parallel lines on the object become curvilinear
or nonparallel lines in an image. If you want to remove this distortion using strict
mathematical modeling, you need to specify the camera's optical characteristics and
information about the object's points in three dimensions, although it can be hard.

Fortunately, we often just need to restore the image on a flat rectangular surface
in space. This happens while creating interactive floors and tables using color or
depth camera. For resolving this, it is enough to specify the coordinates of the
four surface corners in the image and then perform perspective warping using
warpPerspective().

This method works well for cameras with optics close to the ideal pinhole model.
However, if your camera has a wide angle (with the fish-eye effect), the resulted
image will not be an ideal rectangle. To obtain better results, you need to undistort
the image first using the undistort() function.

Let's consider an example that shows us how to do perspective distortion removing.

This is example 09-OpenCV/03-PerspectiveRemoving.

Computer Vision with OpenCV

[264]

Consider a camera-captured image table.png, which contains a sheet of paper. We
want to restore the picture printed on the paper. The image has a size of 1024×768
pixels, and the coordinates of the paper's corners are A (192, 286), B (742, 188),
C (950, 489), and D (215, 665) as shown in the following screenshot:

Assume that this image is loaded to the image object. To restore the picture printed
on the paper, call the following function:

image.warpPerspective(
 ofPoint(192, 286),
 ofPoint(742, 188),
 ofPoint(950, 489),
 ofPoint(215, 665));

The resulting image is shown here:

Chapter 9

[265]

You can see that the picture is restored quite well except the black area at the top of
the image, which appears because the sheet of paper does not lie perfectly smoothly.

Note, the resulted image has proportions different from the original paper's picture.
The used sheet of paper has the size A4 (297 × 210 mm), so it has size proportions 3:2,
whereas the image object has the size 1024 × 768 pixels, so the proportions are 4:3. To
obtain the image with correct proportions, you need to use image2.warpIntoMe()
instead of image.warpPerspective() and specify the size of image2 proportional to
297 × 210; for example, 297 × 210 or 594 × 420 pixels.

We have finished explaining basic image processing using the classes of
ofxCv images. Now, we will consider applying this for solving a particularly
important task of detecting objects on the image, and we will see how to use the
ofxCvContourFinder class for this.

Searching for objects in an image
In order to make your project or installation respond to user actions by using the
data from camera, often you need to search, recognize, and track objects on the live
video from camera. In this section, we will only cover searching objects.

There are several methods to search a specific object in an image:

• Template matching is used for searching objects of a fixed shape. The image
is scanned using a referenced "ideal" template of the interested object for
finding the best match.

• Contour analysis (other name is geometrical matching) is used for searching
objects captured by the camera on a simple background (such as details on
the conveyor line). It's based on computing and analyzing the edges of the
objects on the image for searching the edge's configurations and matching the
interested objects.
This method can work with complex and overlapped objects but is sensitive
to a number of conditions; for example, object should have distinctive edges
and there should not be too many edges in the whole image.

Computer Vision with OpenCV

[266]

• Algorithms based on machine learning are used for searching complex
objects in complex and outdoor scenes. The algorithms use a number of
image features (the sum of pixel values over some rectangles or the local
statistics of edges orientations) together with machine learning algorithms
(Boosting or SVM).
This is the most advanced and robust technique today. Most famous
algorithms are the Viola-Jones algorithm for searching frontal human
faces and the HOG-method (Histogram of Orientated Gradients) for
searching pedestrians, cars, bicycles, animals, and other outdoor objects.

We will consider a simple example of object searching with contour analysis. Here
we will not search specific objects but will find all the bright objects in the image
and find the centers of these objects. To achieve this, we will find contours and call
the pixels inside each distinct contour, the object. Finding contours is provided by a
functionality of the ofxCvContourFinder class, which we will discuss now.

Using the ofxCvContourFinder class for
finding contours
The ofxCvContourFinder class is used for searching contours and bounding
connected white regions in a binary image. These regions here are called blobs.
The typical usage of ofxCvContourFinder is as follows:

1. Declare the ofxCvContourFinder contourFinder; object.
2. Find the contours using the following line of code:

contourFinder.findContours(mask, minArea, maxArea,
maxNumber, findHoles);

Here mask is a binary image. The parameters minArea and maxArea set the
range of the pixels' number in the blobs to reject too small or too large blobs.
Also, maxNumber is an upper limit of the number of resulted blobs and the
findHoles value specifies searching the holes mode. If it is false, black
holes in blobs are simply ignored, else the holes are regarded as blobs too.
For example, contourFinder.findContours(mask, 10, 10000, 20,
false); searches for not more than 20 white blobs containing 10 to 10000
pixels and the holes are ignored.

Chapter 9

[267]

3. Use the found contours via the contourFinder.blobs array. The number
of blobs is given by contourFinder.blobs.size(). Each contourFinder.
blobs[i] blob has the following members:

 ° area – The number of pixels in the blob
 ° length – The perimeter of the blob's contour
 ° boundingRect – The bounding rectangle of the blob
 ° centroid – The point of the blob's center of mass
 ° hole – A boolean value that is equal to true if the blob is not a blob

but the hole of some other blob
 ° pts – The point array of the blob's contour
 ° nPts – The number of points in the contour

Note that the list of blobs is calculated independently for each frame,
so you should not assume that blobs with same the index i mean
the same blob on successive video frames. If you need to retain blobs
identifiers, you should implement it in your own algorithm; for
example, you can assign the IDs of the blobs in the current frame by
getting the ID of the nearest blob in the previous frame.

4. Draw contours using the contourFinder.draw(x, y, w, h) function.
Note that the function uses its internal colors for drawing and draws the
blob's contour line and bounding box.

An example for searching bright objects in
video
Let's consider an example realizing the full processing of the input image image to
the list of objects' center's obj.

This is example 09-OpenCV/04-SearchingObjects.

Use the project Generator wizard for creating an empty project with the linked
ofxOpenCv addon (see the Using ofxOpenCv section). Then, copy the fruits.mov
movie into bin/data of the project, and copy sources of the example to the src folder.

Here, we will consider just the part of the code related to searching for objects.

Computer Vision with OpenCV

[268]

Assume that the scene has a dark background and the objects are brighter than
the background. Then, the processing steps inside the update() function will
be the following:

1. Get the frame from a camera or movie video and convert it into the
ofxCvColorImage image as follows:
image.setFromPixels(video.getPixelsRef());

2. Decimate the image size for speeding up the process. We use a special image
imageDecimated for storing the decimated image, and allocate it at the first
iteration as follows:
if (!imageDecimated.bAllocated) {
 imageDecimated.allocate(image.width * 0.5,
 image.height * 0.5);
}
imageDecimated.scaleIntoMe(image, CV_INTER_NN);

3. Convert the image to a grayscale image ofxCvGrayscaleImage grayImage:
grayImage = imageDecimated;

4. Perform smoothing for noise suppressing as follows:
blurred = grayImage;
blurred.blurGaussian(9);

5. Store the first frame of the movie to the background image. We will assume
that this frame is the "true background image":
if (!background.bAllocated) {
 background = blurred;
}

6. Find the difference between the current blurred image and the stored
background image. Note, we use the difference but not the absolute
difference (absDiff()) because we assume that objects are brighter
than the background.
diff = blurred;
diff -= background;

7. Perform thresholding for obtaining a binary image where the white regions
correspond to the bright objects on the original image.
mask = diff;
mask.threshold(40);

Here the value 40 is the threshold parameter and should be adjusted for
good results while using videos other than the one in example.

Chapter 9

[269]

8. Find the contours of the objects using the contourFinder object of type
ofxCvContourFinder.
contourFinder.findContours(mask, 10, 10000, 20, false);

This function searches no more than 20 white blobs containing 10 to 10000
pixels, and the holes are ignored.

9. Collect all the blob's centers to an array of the points obj, namely,
vector<ofPoint> obj. For shortening the code, we use the reference
to the blob list blobs:
vector<ofxCvBlob> &blobs = contourFinder.blobs;
int n = blobs.size(); //Get number of blobs
obj.resize(n); //Resize obj array
for (int i=0; i<n; i++) {
 obj[i] = blobs[i].centroid; //Fill obj array
}

10. Draw the original image on the screen and mark the objects found.

Compile and run the project. You will see an animation with four images showing
the processing video with rolling fruits. The first image is a frame from the video,
which is decimated by 50 percent. The second image is the difference diff between
the smoothed and background images. The third image is a thresholded image mask
with contours drawn over it. Finally, the last image is the original (decimated) frame
with crosses marking the found objects.

Computer Vision with OpenCV

[270]

Note that the difference image does not contain the bright spot that existed at
the bottom-left corner of the original image, because this spot is included in the
background image and hence was subtracted.

Press 2 and you will see an example of using the centers of the objects obj for
generating images.

This is the original image with some white lines drawn over it. These lines depict the
isolines of some function f(x,y), which depend on the obj array. Each object's center
obj[i] adds to the function cone with the center obj[i]. See a detailed description
of this function in generateImg() function in the full example's code. For returning
to the processing screen, press 1.

In this example, we were interested in searching all the objects irrespective of
their shape. Nevertheless, such a simple example can be used in a wide range of
projects for detecting objects such as bright spots. In particular, it is useful in the
following situations:

• Interactive installation with sticks: You are preparing some lighting objects
such as sticks with LEDs on their ends and giving them to users. The users
flutter the sticks in front of the installation's camera and the installation
responds accordingly.

Chapter 9

[271]

• Interactive pool installation: It's based on using an infrared light
source (such as an IR projector) and a camera that senses IR light of the
corresponding wavelength (it can be a camera such as Sony PS3-Eye,
equipped with a special IR filter). So, the infrared light illuminates the pool
table with balls. The infrared camera detects the pool balls' coordinates, and
your installation draws some visuals using this data back to the table using a
projector. This method works because the IR light and the visible light of the
projector do not interfere.

• Interactive floor installation: Here the infrared light illuminates the floor,
the infrared camera detects objects as humans walking on the floor, and the
projector draws the corresponding game's events on the floor.

Note that for accurately detecting the fact that a foot is standing on the floor, it is
often better to use depth cameras; see how to do this in the Creating interactive surface
section in Chapter 10, Using Depth Cameras. Though depth cameras are much simpler
to adjust and use, they have limitations in their tracking range. So three or more
depth cameras are needed for tracking areas of size 10×10 meters. And when using
ordinary cameras, just one or two cameras can be enough.

Although the ofxOpenCv addon provides a handy interface for basic filtering and
geometrical transformations of images, it is a very small part of OpenCV. So now
we will learn how to use other OpenCV functions in your projects.

Using OpenCV functions
OpenCV is a really huge library with hundreds of functions, including optical
flow computing, feature detection and matching, and machine learning. Most of
these functions are currently not wrapped in the addon ofxOpenCv. You can use
these capabilities by calling the OpenCV functions directly, by performing the
following steps:

1. First, in the testApp.h file, add the following line after the line #include
"ofxOpenCv.h", which instructs the compiler to use the OpenCV's namespace:
using namespace cv;

2. Now you can declare OpenCV's images, which are objects of the type Mat:
Mat imageCV;

Computer Vision with OpenCV

[272]

3. For converting the ofxCv image image into imageCV, call the following
function:
imageCV = Mat(image.getCvImage());

Note, this is fast operation that does not involve copying of data. imageCV
and image will share the same memory region with pixel values. So, we
would suggest only using imageCV for reading and not for changing.

We do not suggest the use of the setNativeScale() function for
images that will be converted to Mat objects and back because there
can be some undesirable pixel values range conversion.

4. If you need to change the Mat object, you can copy it. Remember, the
operator = applied for Mat objects does not copy pixel values. So, for
copying those you need to use the direct command:
Mat imageCV2;
imageCV2 = imageCV.clone(); //Copy imageCV to imageCV2
//Processing imageCV2...

5. If you want to show Mat object on the screen, use the imshow() function:
imshow("Image", imageCV);

The image will be shown in a separate window with the title "Image".
This is very useful for debugging purposes. However, when debugging
is finished, you can comment these functions because imshow() is a
CPU-consuming operation.
To use this function, you should add the line #include "highgui.h" after
all other inclusions at the top of the testApp.cpp file.

6. For converting the result of OpenCV back to ofxCv image, use the
following code:
IplImage iplImage(imageCV2);
image = &iplImage; //Copy result to image

The last operation makes a copy so you can change imageCV2 further without
affecting image. Note, the image type of pixel values and number of channels
should be the same as in imageCV2.

Chapter 9

[273]

Warning
Currently, the described operation image = &iplImage raises an
error when image is not allocated. This is caused by a small bug
in the addon's code. To fix this, open addons/ofxOpenCv/src/
ofxCvImage.cpp and find the following function definition:

void ofxCvImage::operator = (const IplImage* mom)

In this function body, find the line with this command:
if(mom->nChannels == cvImage->nChannels && mom->depth
== cvImage->depth)

Replace the preceding line with the following line:
if(!bAllocated || mom->nChannels == cvImage-
>nChannels && mom->depth == cvImage->depth)

We will demonstrate all these steps in example of using optical flow.

Optical flow
Optical flow is a vector field that characterizes the motion of objects between two
successive frames. Simply put, it is a two-channel image where the first and second
channels mean the x and y axes of the pixels shift respectively. There are many
algorithms for optical flow computing. Most algorithms assume that the motion
between frames is relatively small.

The applications of optical flow in interactive applications includes:

• Detecting areas of motion for tracking the user's activity. This method of
motion detection is stable with ordinary nondepth cameras because it is
invariant to the changing light conditions. Also, it is possible to use an
average motion vector for controlling particles and other objects.

• Segmenting the image using directions of optical flow for finding and using
the contours of the moving objects further.

• Using optical flow for interpolating between frames of a video. It lets you
implement effects such as the famous Flo-Mo video effect. In general, this is
the way for automating video morphing between arbitrary pairs of images.
See the Video morphing example section.

• Implementing a video effect similar to the datamoshing effect by applying the
optical flow data obtained from one video for shifting pixels of another video
or still image. The key idea behind this is considered in the end of this section.

Consider an example of using optical flow for video morphing and warping.

Computer Vision with OpenCV

[274]

Video morphing example
Let's take two images of the same size, calculate the optical flow between these,
and use this data for warping the first image to the second image in correspondence
with the morphing parameter morphValue in the range [0, 1]. The value 0 means no
warping and value 1 means warping on the entire range of optical flow.

This is example 09-OpenCV/05-VideoMorphing.
Before running the example, fix a small bug in ofxOpenCv,
as described in the information box in the Using OpenCV
functions section.

Use the Project Generator wizard for creating an empty project with the
linked ofxOpenCv addon (see the Using ofxOpenCv section). Then, copy images
checkerBoard.png, hands1.png, and hands2.png into bin/data of the project,
and copy sources of the example to the src folder.

Here, we will consider just the main parts of the code related to computing optical
flow and video morphing.

Declare images in the testApp class declaration as follows:

ofxCvColorImage color1, color2; //First and second original images
ofxCvGrayscaleImage gray1, gray2; //Decimated grayscaled images
ofxCvFloatImage flowX, flowY; //Resulted optical flow
 //in x and y axes

At the beginning of the testApp::setup() function, implement loading and
decimating of images. Decimating is needed for a faster computing optical flow:

ofImage imageOf1, imageOf2; //Load openFrameworks' images
imageOf1.loadImage("hands1.png");
imageOf2.loadImage("hands2.png");

color1.setFromPixels(imageOf1); //Convert to ofxCv images
color2.setFromPixels(imageOf2);

float decimate = 0.3; //Decimate images to 30%
ofxCvColorImage imageDecimated1;
imageDecimated1.allocate(color1.width * decimate,
 color1.height * decimate);

//High-quality resize
imageDecimated1.scaleIntoMe(color1, CV_INTER_AREA);

Chapter 9

[275]

gray1 = imageDecimated1;

ofxCvColorImage imageDecimated2;
imageDecimated2.allocate(color2.width * decimate,
 color2.height * decimate);
//High-quality resize
imageDecimated2.scaleIntoMe(color2, CV_INTER_AREA);
gray2 = imageDecimated2;

Now continue the testApp::setup() function body, and compute optical flow
using the Farneback's method. Currently, it is the most stable optical flow algorithm
in OpenCV. The resulting optical flow flow is held as a two-channel image, so we
split it into two separate images flowX and flowY, that we declared earlier:

 Mat img1(gray1.getCvImage()); //Create OpenCV images
 Mat img2(gray2.getCvImage());
 Mat flow; //Image for flow
 //Computing optical flow
 calcOpticalFlowFarneback(img1, img2, flow,
 0.7, 3, 11, 5, 5, 1.1, 0);
 //Split flow into separate images
 vector<Mat> flowPlanes;
 split(flow, flowPlanes);
 //Copy float planes to ofxCv images flowX and flowY
 IplImage iplX(flowPlanes[0]);
 flowX = &iplX;
 IplImage iplY(flowPlanes[1]);
 flowY = &iplY;

For improving the sensitivity of detecting larger motions between images, it is
desirable to smooth the images before computing optical flow, especially when
input images are binary or have hard edges.

In testApp::draw(), we draw the original images and then draw optical flow as
blue lines. For this purpose, we use optical flow values:

float *flowXPixels = flowX.getPixelsAsFloats();
float *flowYPixels = flowY.getPixelsAsFloats();

Now let's check the optical flow. Run the project.

If you run the project, it might crash with an error in
line flowX = &iplX if you didn't fix the small bug in
ofxOpenCv yet. Fix it as it described in information box
in the Using OpenCV functions section.

Computer Vision with OpenCV

[276]

At the top of the screen, you will first see an image with an overlaid optical flow, and
the second image just for reference:

Note that in general, the optical flow is computed correctly. Now let's continue our
consideration and see how to morph using the computed optical flow.

Using optical flow for morphing
Morphing will be implemented as warping using the remap() function, discussed
in the Geometrical transformations of images section. So, we need to construct
ofxCvFloatImage images mapX and mapY, which point how to do warping in the x and
y axes. For this purpose, we will use optical flow and the morphing value morphValue:

mapX.allocate(w, h); //w and h is size of gray1 image
mapY.allocate(w, h);
//Get pointers to pixels data
float *flowXPixels = flowX.getPixelsAsFloats();
float *flowYPixels = flowY.getPixelsAsFloats();
float *mapXPixels = mapX.getPixelsAsFloats();
float *mapYPixels = mapY.getPixelsAsFloats();
for (int y=0; y<h; y++) {
 for (int x=0; x<w; x++) {
 int i = x + w * y; //index
 mapXPixels[i] = x + flowXPixels[i] * morphValue;
 mapYPixels[i] = y + flowYPixels[i] * morphValue;
 }
}
//Notify that pixels values were changed
mapX.flagImageChanged();
mapY.flagImageChanged();

Chapter 9

[277]

Now we can perform warping. The most important thing here is that our mapping
(mapX, mapY) is direct, whereas the remap() function uses inverse mapping. So,
we inverse it using our own function inverseMapping(mapX, mapY), see the
function definition in the project's code. Now for warping, we just need to resize
the mappings to the original images' size and perform remap() as follows:

 //bigMapX and bigMapY have type ofxCvFloatImage
 int W = color1.width;
 int H = color1.height;
 bigMapX.allocate(W, H);
 bigMapY.allocate(W, H);
 bigMapX.scaleIntoMe(mapX, CV_INTER_LINEAR);
 bigMapY.scaleIntoMe(mapY, CV_INTER_LINEAR);
 multiplyByScalar(bigMapX, 1.0 * W / w);
 multiplyByScalar(bigMapY, 1.0 * H / h);

 //Do warping
 morph = color1;
 morph.remap(bigMapX.getCvImage(), bigMapY.getCvImage());

Let's see how it works. Run the project and look at the bottom of the screen. You will
see the result of morphing between the first and second images. Move the mouse
from left to right to change the morphing parameter. You will see how the hands on
the first image continuously change their shape to the shape of the hands from the
second image:

Computer Vision with OpenCV

[278]

The morphing result is quite good. But you can see some undesirable effects in the
resultant image. There are several reasons for this: decimation of images before
optical flow computing, mistakes in the resultant optical flow, and roughness of the
inverseMapping() function. However, this method is automatic, so it can be used in
interactive projects for creating strange and interesting effects.

In our example, we have morphed just the geometry of the first
image to match the shape of the second image. For morphing the
colors of objects, you need to morph the second image too, and
then blend the colors using the morphValue parameter.

Applying morphing to another image
Having computed optical flow, you can use it for morphing any other image, not
necessarily the first input image. This is really a very interesting effect—you will see
how morphing reveals the structure of the original moving hands in this arbitrary
image. Try it in our example by pressing 2. For returning to the original morphing
view, press 1. You will see the result of morphing for a checkerboard image:

Chapter 9

[279]

In this example, we are applying optical flow for shifting pixels on the
fixed checkerboard image. However, you can apply this transformation
to a warped image obtained at the last warping step. Then you will see
the "smudge" of the original image, which looks like the datamoshing
effect widely used in "glitch" videos.

Summary
In this chapter, we learned how to use the ofxOpenCv addon for finding motion areas
in the video, and how to correct perspective distortions for restoring images of planar
rectangular surfaces. Also, we saw how to detect bright objects in the image and mark
their centers. Finally, we learned to use native OpenCV functions for computing
optical flow. We also covered how to use optical flow for video morphing.

In the next chapter, we will consider how to use depth cameras. Compared to ordinary
cameras, depth cameras let you analyze real scenes easily and with more stability.

Using Depth Cameras
A depth camera measures the distance from its sensor to objects and provides us
with information about the 3D scene it sees. Using this information, it is easy to
analyze and recognize 3D objects in the scene, including humans and their body
parts. So today, depth cameras are the most used sensors for providing touchless
interactions in most of the interactive projects. In this chapter, we will learn how to
use depth cameras in openFrameworks projects using the ofxOpenNI addon. Also,
we will consider the example of using depth images for making a flat surface such as
a wall, a table, or a floor interactive.

The topics covered are as follows:

• Depth camera basics
• Installing the ofxOpenNI addon
• ofxOpenNI examples
• Creating interactive surface

Using Depth Cameras

[282]

Depth camera basics
The depth camera is a camera device that captures depth images. The value of a
depth image pixel is not equal to light's brightness, or color, but equal to a distance
from the camera to the corresponding part of the object. The main types of such
cameras are the following:

• Time-of-flight camera: It emits a laser beam and waits for this signal to come
back. By measuring the time between emission and receipt of the beam, and
using the known speed of light, it computes the distance to an object. Such
cameras work in light and dark environments and have high accuracy. One
class of such cameras is relatively slow and is used for exact geo-measuring
and 3D scanning of big areas. Another class of these cameras, such as
Panasonic D-Imager, works in real time and is widely used for interactive
applications at indoor and outdoor scenes.

• Passive stereo camera: It consists of two or more visible-light cameras, which
are a little separated in space and precisely aligned. The cameras capture
frames, and then calculate stereo correspondence between their pixels for
estimating the distance to the objects using the parallax effect. Stereo cameras
are used in a big variety of applications such as outdoor robotics and surgery
assistance. They capture objects in the visible light, so they work in all the
scenes with good lighting. Due to the nature of stereo correspondence, the
measuring accuracy of such cameras decreases with distance.

• Active infrared stereo camera: It uses a low energy infrared laser for
projecting a pseudo random dots pattern on objects and then capturing
it with an infrared camera.

The human eye does not see the infrared light, so you
never see the dots without an equipment, for example
a camera on your mobile phone.

A depth image is computed using stereo correspondence between the
projected pattern and the captured image. The measuring accuracy of such
cameras decreases with distance like in the passive case. They work perfectly
in indoor locations in light and dark environments.
Because of using the low energy lasers, such cameras do not work in outdoor
environment with direct sunlight. Also, they poorly see transparent objects
such as glasses, and light sources such as lamps.
Today, they are the cheapest cameras, used for entertainment and
gesture-controlled applications, and also for many kinds of robotics
and interactive experiments.

Chapter 10

[283]

In this chapter, we will consider only the active infrared stereo cameras. They work
in indoor space, have advanced SDK (OpenNI), and cost about $200. Time-of-flight
real-time cameras and passive stereo cameras can be considered more powerful,
because they can work in outdoor space, but currently their price starts from $1800.

It is expected that Microsoft Kinect 2 will be a cheap
time-of-flight camera

Active infrared stereo cameras
There are several depth camera lines from different vendors: Microsoft Kinect, Asus
Xtion, and PrimeSense Carmine, and each vendor, in its turn, has several camera
models. Most of the cameras used today have the following characteristics:

• Stable ranging distance is from 80 cm to 4 m (also, some cameras can work in
the near mode, ranging from 40 cm).

• The output depth image resolution is 640×480 pixels at 30 FPS. The accuracy
of depth measuring depends on the distance to the object, but the average
value is 2 cm.

• The field of view is 57 degrees, so it sees a horizontal object with a length of
1 m from a distance of 1 m.

• Additionally, the camera can include an ordinary color web-camera and
microphones for audio capturing.

The most notable differences between cameras are in connectivity and size. Microsoft
Kinect connects to USB 2.0 and USB 3.0, but is quite big. Asus Xtion and PrimeSense
Carmine are smaller and hence are more convenient for mounting, but currently
have some issues when connecting to USB 3.0.

The depth images from these cameras can be used for 3D scene analysis, including
human body recognition and analysis of hand gestures. These capabilities are
implemented in the open cross-platform library OpenNI developed by not-for-profit
consortium OpenNI (Open Natural Interface), http://www.openni.org.

Using Depth Cameras

[284]

OpenNI, and particularly its subpart called NiTE, is centered on
analyzing and recognizing humans' postures and gestures. If you need
any other 3D-objects' processing capabilities, such as searching specific
objects like spheres and cylinders, or stitching data from multiple depth
images, you should additionally use the PCL library. This is an open
library for working with 3D point clouds, obtained from depth images.
Appearance of new depth cameras is expected in the near future.
We believe that the major principles discussed in the chapter will be
applicable to these cameras too.

The simplest way of using OpenNI in the openFrameworks project is by linking the
ofxOpenNI addon. Let's discuss how to install the addon and explain its examples.

Let's note, openFrameworks has core addon ofxKinect for working with
Microsoft Kinect cameras. Currently it does not use OpenNI. This
addon is good for the projects which use depth image or 3D point cloud
obtained from camera. For details, see the openFrameworks' example
examples/addons/kinectExample. In this chapter we will use
OpenNI-based solution (implemented in the ofxOpenNI addon), because
it has additional capabilities like tracking users and recognizing gestures,
and works with all depth cameras models.

Installing the ofxOpenNI addon
The ofxOpenNI addon was originally developed by Matthew Gingold. The addon
wraps the basic OpenNI capabilities, including the following:

• Getting a depth image
• Getting a color image if the web camera is included in your depth

camera model
• Tracking the hands (namely, the wrist position) for use in gesture applications
• Tracking human bodies, getting their silhouettes and skeleton point positions

Also, it supports several depth cameras simultaneously.

Chapter 10

[285]

Currently, ofxOpenNI is a non-core addon, so you need to download and install it
yourself. To do it, perform the following steps:

1. Download the ofxOpenNI addon from the site http://ofxaddons.com.

Currently, the addon's page with the download button Download ZIP
is located at https://github.com/gameoverhack/ofxOpenNI.

2. Unzip the file, rename the folder to ofxOpenNI, and move it to the addons
folder of your openFrameworks installation.

3. Read the Drivers & getting the examples to work section of the README file
included in the addon's folder. It contains detailed step-by-step information
on installing required components, including OpenNI and camera drivers
for your operating system (Windows, Mac OS X, or Linux). It also contains
information on running the examples.

Current version of addon is written for openFrameworks 0.7.4. It
works with openFrameworks 0.8.0 in Mac OS X seamlessly, but does
not work in Windows, and probably has issues with Linux. So if at
the time of reading this, the addon is still not updated for using with
openFrameworks 0.8.0, you need to use it with the older version of
openFrameworks, 0.7.4. Download it from the older releases page at
http://www.openframeworks.cc/download/older.html.

Currently, the addon is not supported by the Project Generator wizard, which is
used for creating new openFrameworks projects. So the simplest way of creating
your project with ofxOpenNI is by using its examples as starting sketches. If you
need to use another core or non-core addon in the project, then add it manually.
See Appendix A, Working with Addons for details.

Let's consider ofxOpenNI's capabilities by looking at examples included in it.

Using Depth Cameras

[286]

ofxOpenNI examples
The addon includes a number of examples, exploring basic depth camera and
OpenNI capabilities. The examples are short, self-explanatory, and well commented.
There are three groups of examples: working with depth images, tracking hands, and
tracking users. Let's discuss them.

Currently, the ofxOpenNI addon holds examples in an "almost ready
form". You need to construct the desired example by copying the source
files and libraries in one folder. It's not very comfortable but is quite
simple. Please see the Drivers & getting the examples to work section of the
README file inside the addon's folder for details.
When you compile an ofxOpenNI example under Mac OS X for the first
time, you can get the following compiler error:
The specified SDK "Current OS X" does not appear to have
all of the necessary headers installed...

To fix the error, you need to install the Command Line Tools package
in Xcode. Namely, go to the Xcode menu, click on Preferences..., and go
to the Downloads pane. Select the Command Line Tools item and click
on the Install button.

Working with examples of depth images
There are two examples that demonstrate grabbing and visualizing of depth images.
The following examples can be used as starting points for the projects, which require
just raw depth images or 3D point clouds, without hands or user's body tracking:

• The ImageAndDepth-Simple example draws depth and color images on the
screen. All the work with the depth camera is done using the openNIDevice
object having the type ofxOpenNI.

If you press the I key, the infrared images will be shown instead
of the color images. Using this capability, you can use the depth
camera just like the infrared camera. By closing the laser hole
and adding an infrared light source with the corresponding
wavelength, you can build an infrared-based sensing solution.

Chapter 10

[287]

• The ImageAndDepthMultDevice-Medium example shows the depth and
color images like in the previous example, but here both the images are
pixel-to-pixel aligned. Using this, you can, for example, use depth data
for creating a mask for the color image for removing the background and
a depth-based chroma-keying effect. Such an alignment is enabled by the
openNIDevice.setRegister(true) function. For comparing the aligned
and non-aligned modes, press the T key. Also, this example works with all
the depth cameras connected to your computer and shows all of them on
the screen.

Because of big data rates, you should connect each depth
camera to a different USB hub. Most of the computers have
just two hubs. For connecting the third camera, you need
to buy an additional PCI-e USB hub.

Hand-tracking examples
The following two examples show how to detect and track hands. You can use them
as a starting point for your own interactive drawing projects:

Note that currently the hand tracking examples stop tracking new
hands after about 30 hands are tracked. So use hand tracking via
ofxOpenNI just for testing and learning, and in more serious projects,
use the corresponding OpenNI functions directly, without the addon.

• The HandTracking-Simple example shows how to enable and use hand
detection and tracking. It searches for wrists in the depth image and marks
them with red rectangles. Actually, the OpenNI algorithm does not use
human skeleton tracking for searching hands, but just searches for them in
depth map singularities, which can be hand wrists, and then tracks their
movement. So you can deceive the algorithm by exposing some moving
things in front of the camera.
The tracked hand is retrieved in the example using the ofxOpenNIHand object
by the following line:
ofxOpenNIHand &hand = openNIDevice.getTrackedHand(i);

Then its coordinate on the screen is obtained as a hand.
ofPoint &handPosition = hand.getPosition();

Using Depth Cameras

[288]

The x and y point coordinates of handPosition are pixel coordinates of
the hand in the depth image, and the z coordinate is a distance between the
camera and the hand in millimeters.

If you need a 3D position of the hand in millimeters relative to
the camera, use the hand.getWorldPosition() function
that returns the ofPoint object.

• The HandTracking-Medium example tracks hands, and also cuts some
portion of the depth image around each tracked hand and draws it in
separate images in the bottom part of the screen.

User tracking examples
User tracking is the most advanced feature of OpenNI, which is used in many
interactive wall installations. It is demonstrated in the following examples:

Note that currently the user tracking examples track only the first user
and then don't detect new users. So use the user tracking capability via
ofxOpenNI just for testing and learning, and in more serious projects,
use the corresponding OpenNI functions directly, without the addon.

• The UserAndCloud-Simple example shows how to enable a user's body
tracking and draw the user's silhouette and his/her 3D skeleton. When
OpenNI detects some object as the user's body, which has the size of a
human body, the object moves and is separated from the other objects in
the depth image. After such a detection, the 3D model of the human body
consisting of a number of joined cylinders is fitted to the found object. So
we obtain a 3D skeleton, representing the body as a number of points (head,
torso, shoulders, elbows, hands, hips, knees, and feet).

• The UserAndCloud-Medium example shows the 3D point-cloud of the tracked
user body in 3D, which is colored using the data from the color camera.

There is one more example, ONIRecording-Simple. It demonstrates how to record
and play ONI files and store data from the depth cameras. Such files simplify the
testing of algorithms: you can prepare test recordings and then tune algorithms
using them instead of the real depth cameras.

Now consider the example of using depth data for tracking objects on flat surfaces.

Chapter 10

[289]

Creating interactive surface
A depth image can be used for detecting the presence of an object on any rectangular
flat surface, such as a rectangular part of a wall, a table, or a floor. Coupled with a
projector or a TV panel, it lets us create an interactive system, sensitive to hands or
feet, which move near the surface without touching.

The easiest way to make such a projector-camera interactive system is the following:

1. If you are using a projector for creating a surface, fix it and turn it on to
obtain a picture on a wall, table, or floor. If you are using a TV panel,
turn it on.

2. Direct the depth camera to see the whole picture from the projector or TV
and fix the camera's position. There is no need to place the camera in a
way that the whole image occupies exactly all of the camera's image frame,
because at the next step, we will mark this area's corners and later use the
marks for cropping.

3. Mark the corners of the surface on the color image for using these for
cropping. In the following image, you can see the image in a color camera,
which captures the surface. The surface here is a part of a wall with a
projected picture. The room is darkened, so the color camera sees the area
outside the projection picture as black. The surface's corners are marked
manually by the user and shown in red circles:

Using Depth Cameras

[290]

See a similar topic in the Perspective distortion removing
example section in Chapter 9, Computer Vision with OpenCV.

4. Note that because of the projector showing the screen of the program, you
see an infinite "picture in picture" effect.

5. Capture and store the depth image of the clean surface, without any objects
near it. We will call it the background depth image.

6. Now we can regularly capture depth images and subtract these values from
the background depth image. The pixels with positive values in the difference
image indicate that some object had appeared between the background and the
camera. If we crop the difference image using the corners obtained in step 2,
we will obtain a rectangular image, geometrically corresponding to the original
surface. Its pixel values give us the distribution of distances of all the objects
over the surface. We can use this height distribution for some interactivity
purposes, such as interactive wall, table, or floor.

Let's demonstrate this technology in the example of the drawing application,
which draws colors on the surface with dependence on the distance from the
surface to the object. This project turns your surface (the surface with the projector's
picture or TV panel) into a drawing surface, responding to your hands at a distance,
without touching.

This is example 10-DepthCameras/SurfacePainting.
For playing with the project, you need a depth camera, containing
both depth and color sensors. If you have a depth camera with just
a depth sensor, you need to change the project's code by yourself
to calibrate it without the color camera's image.

The example is based on the ImageAndDepth-Simple example of ofxOpenNI.

In the testApp.h file, add the following declarations in the testApp class declaration:

int W, H; //Screen size
vector<ofPoint> corners; //Marked corners of the surface
ofShortPixels backgroundDepth;//Background depth image

ofPixels outPixels; //Pixels array holding current drawing
ofImage outImage; //Output image built from outPixels

bool calibrating; //Working mode selector – calibrate or draw
ofPoint shift; //Point used for drawing shifted color image

Chapter 10

[291]

Keep the openNIDevice object declaration without changing it.

The calibrating variable is the mode selector. If its value is true, the application
works in the calibration mode, where the user marks corners using a mouse. If its
value is false, the application works in the drawing mode, turning the projected
image into a drawing surface.

The setup() function sets up the depth camera, enables its depth and color images
and the alignment between them, and starts the depth camera to capture. It also
allocates pixels for user drawing, and finally turns on the full screen mode. The body
of the function is the following:

//Depth camera setup
openNIDevice.setup();
openNIDevice.addDepthGenerator();
openNIDevice.addImageGenerator();
openNIDevice.setRegister(true); //Enable alignment
 //of depth and color images
openNIDevice.start(); //Start depth camera to capture

//Set up drawing variables
W = 1024; //Desired screen size
H = 768;
outPixels.allocate(W, H, OF_IMAGE_GRAYSCALE);
calibrating = true; //Set calibrating mode at start
shift = ofPoint(100, 200); //The value of shifting
 //camera's image from the corner
 //of the screen

//Set full screen mode
ofSetWindowShape(W, H);
ofSetFullscreen(true);

The update() function updates the depth camera for obtaining its new images, and
then analyzes the depth data, only if we are in the drawing mode and the user has
specified all the four calibrating corners. The result of the analysis is written to the
outPixels values. Finally, it loads the outPixels data into the outImage image for
drawing it on the screen. The body of the function is the following:

openNIDevice.update(); //Update depth camera
if (!calibrating && corners.size() == 4) {
 //Analyze depth

 //Get current depth image

Using Depth Cameras

[292]

 ofShortPixels &input = openNIDevice.getDepthRawPixels();

 //Process pixels
 int w = input.getWidth();
 int h = input.getHeight();
 int minV = 30; //Minimal distance in mm
 int maxV = 150; //Maximal distance in mm
 for (int Y=0; Y<H; Y++) {
 for (int X=0; X<W; X++) {
 //Process pixel (X, Y)
 //See code below
 }
 }
 outImage.setFromPixels(outPixels);
}

The two parameters, minV and maxV, set the range in millimeters around the surface.
We will analyze the objects lying on the distance in this range from the surface.

For compactness, we omit the computing part in the update() function, after the
//Process pixel (X, Y) line. Now let's see the remaining code and discuss it.
For processing the pixel (X, Y) in screen coordinates, it computes the uniform values
a and b lying in [0, 1], and then computes the pixel (x, y) in depth image coordinates
using bilinear interpolation of corners with weights (a, b). It is assumed that the
corners are ordered clock-wise starting from the top-left corner:

The code for this (X, Y) → (x, y) transformation is as follows:

//Transform screen coordinates (X, Y)
//to depth image coordinates (x, y)
float a = float(X) / W;
float b = float(Y) / H;

Chapter 10

[293]

ofPoint p =
 (1-a) * (1-b) * corners[0]
 + a * (1-b) * corners[1]
 + a * b * corners[2]
 + (1-a) * b * corners[3];

int x = int(p.x);
int y = int(p.y);

Similar transformation of a whole image can be made using OpenCV
functions. See the additional discussion of this method in the Perspective
distortion removing example in Chapter 9, ComputerVision with OpenCV.
There we use another transformation (perspective transformation), but
the resulting images are very similar. The advantages of the OpenCV
method is that the resulting image is anti-aliased and works faster. In
this chapter, we use pixel-by-pixel computing for simplicity.
Also, you can do all the depth analysis using shaders. It will work even
faster than OpenCV.

Having (x, y) coordinates, we check if it actually lies in the depth image, and then
get depth values inputZ and backgroundZ from the current depth image and the
background depth image correspondingly. Though the original depth values are
stored as unsigned short, we use the int type because we need to subtract the values:

if (x >= 0 && x < w && y >= 0 && y < h) {
 //Getting depth values
 int inputZ = input.getPixels()[x + w * y];
 int backgroundZ = backgroundDepth.getPixels()[x + w * y];

Now we compute the value of delta, which is the difference between backgroundZ
and inputZ. Also, we check if any of these values is zero: it means that the depth
camera does not measure the distance in this pixel, so we should not compute
the difference:

 int delta;
 //Check for zero values - it means that depth camera
 //does not compute distance in the pixel
 if (inputZ != 0 && backgroundZ != 0) {
 delta = backgroundZ - inputZ;
 }
 else {
 delta = -1;
 }

Using Depth Cameras

[294]

The computed value of delta is a distance between the object and the surface in
millimeters. Now we check if it lies in the range between minV and maxV, and update
outPixels correspondingly.

 //Output value
 if (ofInRange(delta, minV, maxV)) {
 int value = ofMap(delta, minV, maxV, 0, 255, true);
 outPixels.getPixels()[X + W * Y] = value;
 }
}

We finished the code of the update() function. Let's consider the draw() function.
In the calibrating mode, it draws a white screen with color and depth images, and
also draws marked corners on the color image. In the drawing mode, it just draws
the current drawing outImage. The body of the function is the following:

ofBackground(255, 255, 255); //Set white background

if (calibrating) {

 //Draw color and depth image
 ofSetColor(255, 255, 255);
 int w = openNIDevice.getWidth();
 int h = openNIDevice.getHeight();
 openNIDevice.drawImage(shift.x, shift.y);
 openNIDevice.drawDepth(shift.x+w+20, shift.y, w/2, h/2);

 //Draw corners
 ofSetColor(255, 0, 0);
 ofFill();
 int n = corners.size();
 for (int i=0; i<n; i++) {
 ofCircle(corners[i] + shift, 10);
 }
 if (n == 4) {
 for (int i=0; i<n; i++) {
 ofLine(corners[i] + shift,
 corners[(i+1)%n] + shift);
 }
 }
}

Chapter 10

[295]

else {
 //Show current drawing
 ofSetColor(255, 255, 255);
 outImage.draw(0, 0);
}

Switching between the calibrating and drawing modes will be carried out by
the Space key. Also, while switching to the drawing mode, we will store the
current depth image as the background depth image, backgroundDepth.
This is implemented in the keyPressed() function by the following code:

void testApp::keyPressed(int key){
 if (key == ' ') {
 calibrating = !calibrating;
 if (!calibrating) { //store background
 backgroundDepth =
 openNIDevice.getDepthRawPixels();
 }
 }
}

Finally, we add to the body of the mousePressed() function the code for creating the
corners when the mouse is clicked:

void testApp::mousePressed(int x, int y, int button){
 if (calibrating && corners.size() < 4) {
 corners.push_back(ofPoint(x, y) - shift);
 }
}

Note that we store the corners not as original (x, y) mouse coordinates,
but shifted by the value of -shift, because the color image is shifted
while rendering correspondingly.

The project is ready.

Compile the project in the Release mode for better performance.

Now let's play with it.

Using Depth Cameras

[296]

Running the project
Working with the project comprises of the following steps:

1. Enable the projector or TV, and send to it the content of your screen.
2. Run the project. You will see the color and depth images on the white screen.

Position the camera so that it can see the whole surface image. Then look
at the depth image. It is a drawing smaller than the color image and is only
used to ensure that the depth camera sees the surface properly. If the depth
image is filled with some solid color—all is ok. But if the depth image has
many black pixels, it means that the camera is too close or too far from the
surface or the surface material is too dark, transparent, or reflecting. In this
case, try to move the camera until you find a better position.

3. Use your mouse to mark four corners on the surface of the color image. It is
assumed that the corners are ordered clock-wise starting from the top-left
corner, as shown in the previous image. An example of the photo of such a
surface with selected corners is presented as follows:

4. Note that this is the photo. The content of the screen is inside the white
rectangle, where you can see the marked corners.

5. Go away from the surface and press Space. Then the application stores the
current depth image as the background depth image and switches to the
drawing mode.

Chapter 10

[297]

6. Now it's time for you to enter. Go to the surface, and move the hands near it
at a distance ranging from 30 mm to 150 mm (the distance range corresponds
to the values of minV and maxV). You will see how your hands draw colors on
the surface, resulting in a black and white abstract drawing.

Move the hands slowly, and you will obtain the picture with smoothing colors as
shown in the following image:

Now move the hands faster and you will see a more stepping picture:

Using Depth Cameras

[298]

There are some additional notes on using this application:

• You can walk near the surface without disturbing it, because the application
changes the drawing only when an object is at a distance between 30 mm
and 150 mm from the surface.

• We use a low distance value equal to 30 mm (the parameter minV in code)
instead of 0 mm, because the depth camera does not measure distances very
accurately. So if you use smaller values for minV, it can give more noise in the
resulting picture.

• Sometimes, due to small movements of the depth camera, the background
image becomes inaccurate. In this case, just press Space twice. The application
will switch to the calibration mode and then back to the drawing mode, and
store a new background depth image.

• You may note that when you move your hand away from the surface, the
tracked position of the hand does not coincide with the real hand properly.
The reason is that our simple model does not take into account the relative
geometrical positions of the projector and the camera. So our model works
properly just near a flat surface.

For creating a more advanced model that will detect the object's
position accurately, you should not use the depth image itself,
but a 3D point cloud. See the Additional topics section.

You can use this example as a sketch for creating interactive tables and floor games.
The starting point for this is replacing the following line in the update() function:

if (ofInRange(delta, minV, maxV)) {

with just {. In this case, the application will show not the drawing, but the current
distribution of distances over the surface. This distribution is held in pixel values of
outPixels. You can use it directly, create mask of moving objects using thresholding
algorithm, and so on.

We have finished the main example of the chapter. Now we will discuss the topics
suggested for further study.

Chapter 10

[299]

Additional topics
In this chapter, we worked only with objects in screen coordinates, by just using
depth values of depth images. But in many applications, you need to use the 3D
point cloud, which represents the depth image points in 3D space—in the world
coordinate system centered at the camera. For obtaining a 3D point cloud from the
depth image, you should convert all its pixels to 3D points using the openNIDevice.
projectiveToWorld(p) function. Namely, each pixel (x, y) should be represented
as point p, where p.x = x, p.y = y, and p.z is equal to the value of the depth
image's pixel (x, y): p.z = openNIDevice.getDepthRawPixels()[x + w * y].

The 3D point cloud can be used for:

• Accurately modeling the distance distribution over the flat surface. See the
discussion at the end of the Creating interactive surface section.

• Making dynamic video mapping, which maps a projector image exactly on a
moving object such as a performer. To achieve this, you should use geometrical
information of relative positions of the projector and depth camera. For details
see the ofxCamaraLucida addon available at http://ofxaddons.com.

• Stitching data from several depth cameras by combining their point clouds
for extending the area of interaction.

For advanced knowledge on working with 3D clouds, you should
see the PCL library, which is an open library focused on working
with 3D point clouds.

Other topics to learn are user tracking, hand tracking, and gesture recognition. We
suggest that you do this not just by exploring the ofxOpenNI source codes, but also
by studying the original OpenNI library.

Summary
In this chapter, we learned how to use the ofxOpenNI addon for working with depth
cameras. We explored its examples and built a simple projector-camera interactive
system, which can be used as a basis for creating interactive walls, tables, and floors.

In the next chapter, we will consider using networking for creating complex and
distributed interactive projects.

Networking
Networking provides a way for data exchange between several devices. It is
a principal component that allows remote control of some parameters inside
applications of mobile and tablet devices, and is also used to make interactive
projects working in a synchronized manner on several computers. In this chapter,
you will learn how to implement and use OSC and TCP protocols in your
openFrameworks projects as follows:

• Networking basics
• Using OSC protocol
• Using TCP protocol for streaming images

Networking basics
Networking comprises a number of hardware and software technologies that
provide data exchange among digital devices and even among applications inside a
computer. The most popular network model today is called TCP/IP (Transmission
Control Protocol/Internet Protocol). It works using wired (LAN—Local Area
Network) or wireless (WLAN—Wireless LAN) connections. All the modern
computers and mobile devices have support of TCP/IP.

Another networking technology is wireless ZigBee networks,
widely used in physical computing projects. Connecting just two
devices can be considered as the simplest network. Old but still
popular technologies for wired connections are USB, serial port
(RS-232), RS-485, and I2C (used for micro devices).

In this chapter, we will consider usage of TCP/IP for connecting several devices
inside a local network. Local network is built and controlled by network router. A
network router is a special network node working as a separate device or integrated
within your laptop.

Networking

[302]

The network router gives a unique identifier, called network address, to each device
connected to the network. The address has a form such as 192.168.0.3, or can
be a computer name, such as My machine. Each device can refer to itself using the
address, localhost, or its equivalent, 127.0.0.1. See the properties of your network
adapter to find out the network address of your device. You can also request
the network information using the Terminal window, by entering the ipconfig
command (for Windows) or the ifconfig command (for Mac OS X and Linux).

For testing the connection between two computers with known addresses, use
the ping command, for example, ping 192.168.0.3. If the connection is not
established, it is probably blocked by your router's or computer's firewall or
antivirus. In this case, check their settings.

Note that the network address can vary when restarting devices
and routers. So for long-term working interactive installations,
you should fix the computers' addresses in their network adapter's
settings, or just use computer names instead of numbered addresses.

For sending some data from one device to another, you should specify the network
address of the destination device, and also the port number, which is an integer
number between 0 and 65535. Some ports are reserved, for example, port 80 is used
for HTTP protocol exchange by your browser. In the chapter examples we will use
port 12345.

Ports with high numbers (greater than 10,000) are rarely used by system services, so
most probably you can use them. To find out which ports are used in your system,
use special software or networking commands from Terminal. For connecting
devices, we often use ports 12345, 12346, 12347, and 12348.

In this chapter we will learn how to use the following two protocols for
data transmission:

• OSC: Open Sound Control is very simple and fast. It's appropriate for
transferring small amounts of information (such as commands for changing
parameters and objects' coordinates) at fast rates. It is the main protocol used
in interactive installations and physical computing projects. It is supported in
all the VJ-related software.

Initially, OSC was made as a network replacement for MIDI,
which is a wired protocol for connecting musical instruments.
Now OSC is used for controlling a wide range of applications
and devices, often not related to music.

Chapter 11

[303]

• TCP: Transmission Control Protocol is capable of easily transferring a large
amount of data. It is a universal protocol. In this chapter we will see an
example of using it for image streaming.

Let's start with OSC protocol.

Using OSC protocol
OSC is an extremely popular protocol for sending control commands and parameters
between devices and applications. It is a protocol in which there is no confirmation
of the data exchange success, that is, the sender doesn't know if the receiver received
the data, and the receiver does not know if somebody sent something to it. As a
result, data can be lost without any notification to the sender and the receiver.
Though, in a local network such a situation is very rare and occurs only if you are
using extremely fast frame rates for sending data.

OSC is a thin layer on the UDP protocol. For more
information, read about UDP specification.

For using OSC capabilities in openFrameworks projects, you need to use the ofxOsc
addon. This is a core addon included in openFrameworks distribution.

We suggest that the first time you try OSC, play with
openFrameworks examples oscSenderExample and
oscReceiveExample, located in openFrameworks's folder
examples/addons. Run both of them on one PC, and then
move the mouse over the oscSenderExample window. You
will see that oscReceiveExample receives mouse coordinates
and writes them on its screen.

To use the addon in your project, you have three options:

• Start a new project by copying oscSenderExample or oscReceiveExample
into your projects folder. This way is the simplest and the best for the first
trial of OSC.

• Create a new project with Project Generator wizard by specifying the ofxOsc
addon. See Appendix A, Working with Addons for details.

• Link all the files inside the addons/ofxOsc folder to your project and
specify their paths. This is the method for adding OSC support to the
existing project.

Networking

[304]

Now you have the project with the linked ofxOsc addon, and can send and receive
data using OSC protocol.

Sending data
For sending data with OSC in your project, perform the following steps:

1. Add the #include "ofxOsc.h" line in the testApp.h file right after the
#include "ofMain.h" line.

2. Declare the sender object that will send the OSC data by adding the
ofxOscSender sender; line in the testApp class definition.

3. Initialize the sender in the testApp::setup() function by using the
following line:
sender.setup("localhost", 12345);

The first argument of the sender.setup() function is a string containing
the receiver's address. localhost is the address of the computer itself,
so, sender will send data to some other application running on the same
computer. For sending data to another device, you must know its address
and specify it, for example, 192.168.0.3. The second integer argument is
the port of the receiver. We use 12345 because it is not normally used by the
operating systems for any special purposes.

4. When you need to send some data, create the OSC message as an object
of the type ofxOscMessage, specify its address, fill it with a parameter or
parameters, and finally send the message using sender.sendMessage():
ofxOscMessage m;
m.setAddress("/volume");
m.addFloatArg(0.4f);
sender.sendMessage(m);

The address of the message is not the receiver's network address. It is just
the name of a parameter that can be understood by the receiver. The address
begins with / and can contain several / symbols if needed, for example,
/object1/velocity.
The message can contain one of the several arguments of the following
types: float, int, and string. The arguments are attached to the message
sequentially by calling the corresponding functions: m.addFloatArg(),
m.addIntArg(), and m.addStringArg(). For example:

m.addFloatArg(0.4f);
m.addIntArg(1);
m.addStringArg("start");

Chapter 11

[305]

The most used types of arguments are the float values in the range [0, 1].
They are naturally linked to VJ controllers and other equipments via software
platforms such as VDMX and Max/MSP. Also, integer values are used for
representing a button state (0 - disabled, 1 - enabled).

You can have several senders sending data to many destinations.

We suggest storing destination address and port numbers in an external
.xml file placed in the data folder of your project. We call this file
settings.xml. Add the operations for reading the values of the
destination address and the port number to the testApp::setup()
function and use these values as parameters of sender.setup(). This
method gives you the flexibility to run the project in different network
configurations without recompiling it.
Use the ofxXmlSettings addon which works with .xml files. Learn
how to use it in the openFrameworks example: examples/addons/
xmlSettingsExample.

Please note the following rules:

• Be careful not to send messages too fast because they can be lost. Normally,
sending at 30 or 60 fps works well.

• If you need to send many messages at once, a good idea is to combine them
into one bunch using the ofxOscBundle object. Just create an object of this
type, add to it your ofxOscMessage messages, and send it:
ofxOscBundle bundle;
bundle.addMessage(m); //First ofxOscMessage message
bundle.addMessage(m2); //Second message
//...
sender.sendBundle(bundle); //Send bundle

• OSC packets are limited in size. The maximum size depends on the operating
system and network settings, but normally it is not less than 500 bytes. If the
limit value exceeds, your OSC packets can frequently get lost. So do not send
messages and bundles containing much information. Note that all the data,
including numbers, is stored in an OSC packet in text form.

Networking

[306]

Receiving data
For receiving data with OSC in your project, perform the following steps:

1. Add the #include "ofxOsc.h" line in the testApp.h file right after the
#include "ofMain.h" line.

2. Declare the receiver object which will receive OSC data by adding the
ofxOscReceiver receiver; line in the testApp class definition.

3. Start the receiver in the testApp::setup() function by using the
following line:
receiver.setup(12345);

The argument of the receiver.setup() function is the integer value of
port number.

If you need to use several receivers on one computer, you
should specify different ports for each of them.

4. Now you should wait for the messages that are incoming to the receiver
and parse them. The best practice is to do it in the testApp::update()
function in a while loop:
while (receiver.hasWaitingMessages()){
 //Get the next message
 ofxOscMessage m;
 receiver.getNextMessage(&m);
 //Parse message, for example:
 if (m.getAddress() == "/volume"){
 //Get first argument
 float volume = m.getArgAsFloat(0);
 //...
 //Use volume value, for example:
 sound.setVolume(volume)
 }
};

You can get the values of arguments in the message m using the functions
m.getArgAsFloat(index), m.getArgAsInt32(index), and
m.getArgAsString(index), where index is the argument's index, 0
– first, 1- second, and so on. For getting the number of attributes, use the
m.getNumArgs() function, which returns the value of attributes in m.

Let's look at some typical schemes for using your projects with other applications by
connecting them using OSC.

Chapter 11

[307]

Typical schemes of OSC usage
Typical usage of OSC is the following:

• Use Apple iPad or other tabletops for sending commands such as saving
screenshots to disk or controlling parameters such as particles' velocity.
You need to install on your tabletop an application such as TouchOSC, which
will send OSC messages from your device to your openFrameworks' project.

• Use your openFrameworks application as a tracker, which obtains
some information from the world (for example, use depth camera for
computing coordinates of the user's body parts), and send it to Max/MSP,
VDMX, QuartzComposer, TouchDesigner, or Unity3D for generating
sounds and visuals.

For more complex schemes, you need to use an OSC-manager application, which
routes OSC signals, such as OSCulator.

While OSC is well-supported by all the creative coding and VJ software, it cannot
easily transmit big data such as images. So let's consider how to do it with another
protocol, for example, the TCP.

Using TCP protocol for streaming images
TCP is the basis for all the Internet protocols, for example, HTTP. This is an
error-checking protocol, which guarantees obtaining valid data and notifying
errors. This makes it appropriate for sending big volumes of data from computers,
not only in your local network, but also around the world.

For working with TCP in openFrameworks, you need to use the ofxNetwork addon.

We suggest that the first time, you should try TCP with
openFrameworks examples: networkTcpServerExample and
networkTcpClientExample, located in openFrameworks's
folder examples/addons. Run both of them on one PC, and
then activate the window of networkTcpClientExample
and press some keys. You will see that the keys will be sent to
networkTcpServerExample and printed on its screen.

For linking the ofxNetwork addon, there are three options similar to the ofxOsc
addon. Check the beginning of the Using OSC protocol section for details.

Networking

[308]

The scheme of working with TCP is based on the client-server technology. In one
application, you need to create and start a server using the ofxTCPServer server
object. In another application, you need to create a client using the ofxTCPClient
client object, and establish a connection with the server. After this, you can send
string messages and raw data bytes from client to server and from server to client.
There can be several clients connecting to one server.

In principle, using the ofxNetwork addon, you can implement your own HTTP or
FTP server and do anything such as downloading files from Internet. Though, for
serious projects, we strongly recommend not to do this by yourself, because TCP is
a very low-level protocol for this. Instead, use some ready-made addons or special
libraries for this. Also, openFrameworks core contains several classes, which could
be useful for your needs:

• If you need to download images from the Internet, you can use the image.
loadImage(url) function, where url is a string specifying URL of
an image. Note that it pauses the application execution until the image
is downloaded. So, to download the image without pausing (called
asynchronously), see the openFrameworks example: examples/graphics/
imageLoaderWebExample.

• To download arbitrary files, you can use the ofURLFileLoader class. We will
not consider it in this book.

• To work with HTTP requests and responses, see the functions in the
libs/openFrameworks/utils/ofURLFileLoader.h file. It's also out
side the scope of this book.

We will not consider ofxTCPServer and ofxTCPClient classes in the detail, but we
will include an extremely useful example of using it for streaming images between
applications by working on the same or different computers.

The streaming images example
Let's consider an example that demonstrates sending images between applications
using TCP. It consists of two projects—the sender and the receiver.

The example consists of two projects, networkImageSender
and networkImageReceiver. They are located in folders
11-Networking/networkImageSender and 11-Networking/
networkImageReceiver of the book's examples.

These two example projects are presented by a number of source .h and .cpp files.
Read the beginning of the testApp.h files for detailed instructions on how to create
openFrameworks projects from these sources.

Chapter 11

[309]

Compile and run both the projects. The sender will grab camera images and
send them to the receiver. Both projects draw current images on the screen, and
also show the current frame's ID. Additionally, the receiver shows the frame rate
of the images received (it depends not only on networking, but also on the real
frame rate of the camera):

The sender and the receiver use the ofxTCPServer and ofxTCPClient classes
for sending and receiving images as uncompressed arrays. See the details of its
implementation in the pbNetwork.h and pbNetwork.cpp files, which are included
in each of the example's projects.

You can use this example as a sketch for your own projects when you need to send
big amounts of information between applications.

We often use such technology in our interactive installations and
performances. We mount two PCs, a Tracker, which works with
depth cameras, and a Render, which renders installation visuals.
The Tracker gets data from several depth cameras, sticks them into
a bigger depth image, and sends it to the Render via TCP. Such
separation of tracking and rendering increases the overall system
stability and off-loads the Render from analyzing depth data, so we
can do more processing and obtain richer visualization.

Networking

[310]

Normally you can send 320 × 240 grayscale image at 30 fps using wired connections at
100 MBps. For sending bigger images, use faster network equipments, such as 1 GBps
and higher. Note that we never use wireless connections during serious concerts and
performances because of possible instability induced by viewers' mobile devices.

If you need to send images from one application to another on a Mac
computer, you do not need to use networking. The best option in
this case is to use an open library called Syphon, by downloading
and installing the ofxSyphon addon. This addon allows the exchange
of images between openFrameworks and other applications at
OpenGL level, so it works faster than networking.

Summary
In this chapter, we learned how to use OSC and TCP protocols to connect application
with other applications and devices. It lets us create complex distributed interactive
systems with possibilities far beyond one single openFrameworks project.

This was the final chapter of the book. In the book, we learned some of the basics of
interactive multimedia. We hope you continue your investigations, realize your own
projects, and break the boundaries of interactive experience!

Working with Addons
Addons are plugins of a specific kind for openFrameworks. Addons add new
capabilities to openFramework projects, such as working with a network, depth
cameras, computer vision, and others. In this chapter, we will learn the basic
principles of addons' structure, and working with addons:

• Installing a non-core addon
• Linking addons to a project
• Using Project Generator
• List of selected addons

Addons basics
Though openFrameworks' core has powerful capabilities for processing and
generating various kinds of multimedia data, it does not contain everything.
For example, the core does not contain support for depth cameras, processing
the images using the computer vision library OpenCV, or sending and receiving
data via a network.

For using such capabilities in your project, you would link and use any of the C++
or C external libraries that are available on the Internet. But, each library is different
so using them in your project is sometimes easy and sometimes not. Fortunately,
openFrameworks has a friendly mechanism for plugging libraries to your project.
Such a mechanism is called an addon.

Working with Addons

[312]

Most often, an addon is a class that acts as a wrapper for a library. Also, the addon
contains the library itself in a form that is ready to be linked to your project binaries.
This relation is shown in the following image:

The term wrapper here means that it lets your project and a library communicate in
some way. openFrameworks' addon mission is to simplify such a communication
and do it in a standardized way (in "the openFrameworks's style"). Hence, you do
not need to learn about a library interface and its usage but just learn how to use an
addon, and that would be enough for most situations. So using addons accelerates
project development a lot. Furthermore, when you need deeper capabilities of the
library, not included in the addon, you can always access them by reaching the
library objects and functions directly or through the addon's class members.

Remember, an addon is just an openFrameworks extension; it only links to a project,
which is using it, but does not affect the other projects and openFrameworks itself.

Sometimes an addon is not a wrapper, but just a class that adds some new
functionality without linking any new library to the project. See the following image:

Appendix A

[313]

Addons in openFrameworks
Every openFrameworks's addon class name begins with ofx. This is an acronym for
openFrameworks extension. For example, ofxXmlSettings is a class for writing and
reading settings in XML files.

Addons are located in the addons folder of openFrameworks. The examples of
addons' usage are located in the examples/addons folder of openFrameworks.

There are two classes of addons. The first class of addons is called core addons and is
distributed with openFrameworks. You have the addons of this class in the addons
folder right after installing openFrameworks. They are stable and useful addons that
are needed in many interactive projects.

The second class of addons is called non-core addons and are available for
download at http://ofxaddons.com. There are both mature addons as well as the
ones currently in development. Please test them carefully before using them in your
installations or performances. Fortunately, all the addons have open code, and you
can always check and modify them. Nevertheless, sometimes addons have binary
.lib or .a files; it is very difficult to find and correct errors in such addons rapidly,
so again, test addons before using them.

Installing a non-core addon
To install a non-core addon into openFrameworks, perform the following steps:

1. Go to http://ofxaddons.com, find the desired addon and click on its name.
2. The addon's page will be opened. The page contains addon's

description and downloading button. Currently download button
is named Download ZIP and is located in the right part of the page.
Press it to download the addon's archive.

3. Unpack it into the openFrameworks' addons folder.
4. If the name of the unpacked folder containing an addon does not match the

addon's name, for example, ofxOpenNI-master.zip, rename the folder to
the addon's name, ofxOpenNI.

5. If the addon's folder contains examples of its usage, it is a good idea to move
the examples to the examples/addons folder.

Working with Addons

[314]

The world of addons is rapidly evolving. New addons appear and are renamed
regularly. The most useful non-core addons eventually become core addons. And
some core addons migrate into openFrameworks core. (Then the ofx prefix in the
class name turns into of). So, it would not make much sense to discuss all the existing
addons because next year, the list could be totally outdated. Nevertheless, we will
discuss the current core and some non-core addons in the List of selected addons section.

Adding new capabilities to your projects using addons is very easy
and comfortable. But there are many libraries and algorithms that have
not been implemented in addons yet. So if your project needs some
functionality, and if there are no addons for this, don't be upset and solve
the problem without addons. For example, if you need to control a new
device from your project, then find its SDK, the library or example of its
usage, and use it in your C++ project directly without addons.
Once you succeed in doing this, you can package your code as an addon
and publish it for the openFrameworks' community by following the
recommendations at http://www.ofxaddons.com/howto/.

Now we will talk about linking addons to your project.

Linking addons to a new project
All the core addons and most of the non-core addons have examples of their usage. So
if you are starting a new project and need to use just one particular addon, the simplest
way to do it is to just copy the folder containing the example of the addon into a new
folder, rename the folder, and start to change the project's code for your needs.

For example, if you plan to make a project that will use XML files to store the settings
in the project, then copy the folder xmlSettingsExample from examples/addons
to apps/myApps and rename the copied xmlSettingsExample to myProjectXml.
Finally, open the project inside myProjectXml folder and continue developing it
there. The ofxXmlSettings class is included in the project, so you can use it.

If you need to link several addons to the new project, it is a good idea to generate an
empty project with linked addons using the Project Generator wizard application,
included in openFrameworks.

Appendix A

[315]

Using Project Generator
To create a new project with Project Generator, perform the following steps:

1. Run the Project Generator application. Depending on your OS, it is
located in the folder projectGenerator or in apps/projectGenerator.
You will see its main screen with a number of buttons as shown in the
following screenshot:

2. Click on the Name: mySketch button, the text input window appears. Enter
the desired name for your project here, for example myProject1, and click on
the OK button.

3. If you want, click on the Path: … button and select a folder for your project.
4. Now, click on the Addons: button. You will see a window with the list of

addons currently installed in the addons folder:

Working with Addons

[316]

5. On the left-hand side, you will see the list of core addons, and on the
right-hand side, you will see the list of non-core addons. Note that if
you have not installed any addons by yourself yet, the list to the right
will be empty.

6. Select the addons you need for your project by checking the corresponding
checkboxes. For example, if we want to use the OSC protocol and xml files,
check the ofxOSC and ofxXmlSettings boxes:

7. Click on the << Back button and you will return to the generator's
main screen.

8. Click on the GENERATE PROJECT button to generate a new project.
Once generated, at the bottom of the generator's screen, you will see
the text, generated: [path to our project].

9. By now, the project is generated and the addons are linked to the project but
to use addons, we should add the #include directives of these header files.
So the next step is to open the generated project and add the corresponding
#include directives for the addons. Normally, the name of the included file
for the addon is exactly the addon's name with the .h suffix. In our example,
we should add the following lines after the line #include "ofMain.h" in the
testApp.h file:
#include "ofxOsc.h"
#include "ofxXmlSettings.h"

10. Now, you can continue developing and using all the addons you linked to
the project.

Appendix A

[317]

There is one tricky thing regarding the linking of non-core addons; there is a
dependence between the addons. That is, some addons may require other addons
for their work. So if you link such an addon and try to compile the project without
the required addons, you will get compiler errors. Fortunately, you can discover
which addons you are missing by reading the compiler error message. For example,
an error text such as Cannot open include file: 'ofxSTL.h': No such file or directory
means that you are missing the ofxSTL addon. To resolve the problem, you need to
install all the missing addons, restart Project Generator, select all the needed addons,
and generate the project again.

Linking an addon to an existing project
If you are working on the project and suddenly realize that you need to link an
addon, don't worry. You can do it at any time by performing the following steps:

1. If the addon is not installed in the addons folder yet, download and install it
by following instructions from the Installing a non-core addon section.

2. Add all the .h, .cpp, and .lib or .a files from the src and lib folders of the
addon to your development environment's project.

3. If necessary, add paths to the addon's folder and all its subfolders into the
project's settings.

Most addons contain the file install.xml in their folders. This
file describes the exact information about linking an addon for each
platform. By the way, Project Generator uses this information to
link an addon. You can read this file and follow its information to
link the addon yourself.

Note, for adding paths to addon's folder in openFrameworks's project for Linux,
you need to just add line with the addon's name in addons.make file in the project's
folder. See details at http://www.openframeworks.cc/setup/linux-codeblocks/.

Working with Addons

[318]

List of selected addons
Here we will list some of the most useful addons (selected just by our opinion).
Remember, there are many more great addons adding functionality in the various
areas of multimedia and interactivity, so search and explore them.

Some of the core addons are:

• ofxXmlSettings: It reads and writes data from and to XML files. It's very
useful for storing project settings such as screen size, frame rate, number
of camera, and physics constants.

• ofxGui: It contains a number of interface elements for creating a number of
buttons and sliders on the screen.

• ofxOsc: It lets you send and receive short amount of data with OSC protocol
messages via the network. It is a way of communicating with other applications
written in openFrameworks, Processing, Max/MSP, and other software such as
VDMX and TouchOSC. See details of it in Chapter 11, Networking.

• ofxNetwork: It lets you send and receive TCP protocol messages, and it can
send huge amount of data such as images via the network. See details of it in
Chapter 11, Networking.

• ofxOpenCv: It is the wrapper for the computer vision library, OpenCV. See
details of it in Chapter 9, Computer Vision with OpenCV.

• ofxKinect: It is addon for working with Microsoft Kinect depth camera. See
its details in Chapter 10, Using Depth Cameras.

• ofxSvg: It loads and renders vector graphics from the SVG file format. This
addon is useful when you need to draw vector-based graphics.

• ofxVectorGraphics: It creates PS files with your drawings. These are vector
files used for high-quality printing.

• ofx3DModelLoader: It loads and renders 3D models in the 3DS file format.
It is an easy way to work with static 3D objects in your project. However, the
addon is too simple for serious use so for advanced 3D models rendering,
you need other addons such as ofxAssimpModelLoader.

• ofxAssimpModelLoader: It loads and renders 3D models, including
animated models.

• ofxThreadedImageLoader: It loads and renders images from files or
the Web in a separate thread so your application will not pause while
the image is loading.

Appendix A

[319]

Some of the non-core addons are:

• ofxOpenNI: It is the wrapper for the OpenNI library, working with depth
cameras. See its details in Chapter 10, Using Depth Cameras.

• ofxMarchingCubes: It implements the Marching Cubes algorithm for
rendering isosurfaces in 3D. This addon needs the ofxSTL addon to work.

• ofxSyphon: Currently this addon is only for Mac OS X. It is a wrapper on the
Syphon protocol for interchanging images among applications on the same
computer. We often use this addon by sending screen from openFrameworks
project to VDMX.

Summary
In this chapter, we learned what addons are, how to install them in openFrameworks,
and how to link them to your project. A shortlist of the most useful addons was
also given.

There are lots of interesting and useful addons, so take some time to install addons,
play with their examples, and read their source code. In this way, you will get ideas
for new projects, develop ideas on how to improve existing projects, and learn
something new about libraries and the technology of programming in general.

Perlin Noise
Perlin noise is the algorithm for generating a series of slowly changing random
values that behave just like the parameters of live motion of a living creature. It is
one of the most used algorithms in computer graphics. It is used for random object
movement, texture generation, and so on. Many examples in the book are essentially
based on using Perlin noise. In this appendix, we will find out what Perlin noise is
and how to use it in openFrameworks projects; we will cover the following topics:

• Perlin noise basics
• Using the ofNoise() function
• Space-coherent noise

Perlin noise basics
Perlin noise is the algorithm used for computing values of a pseudo-random
function, smoothly depending on its parameters. It was originally developed in
1982 by Ken Perlin and named after him. Today, it's called classical noise. In 2001,
Ken Perlin developed a modification of the algorithm and called it simplex noise.
Simplex noise works faster than classical noise, but the results differ a little.

Nowadays both noises are widely used. Often it is not very important which
algorithm is used in a given case; that's why we will refer to both of them as just
Perlin noise.

Perlin Noise

[322]

For a developer, the Perlin noise function ofNoise(t) just takes values in the
range [0, 1] and depends on the parameter t. The dependence is smooth; that is,
a small change in the value of the input parameter t leads to a small change in
the output result. But, unlike any other mathematical function such as sin(t)
or exp(t), Perlin noise is not periodic and is not constantly increasing. It has
complex and non-repetitive behavior, which is called pseudo-random behavior.
That is, on one hand it is a function that seems random, and on the other hand it is
fixed. No matter how many times you compute ofNoise(t) for the given t, you
will obtain exactly the same result.

The main advantage of Perlin noise compared to an ordinary pseudo-random
number generator, ofRandom(a, b), is the controllable smoothness. Indeed,
if we will consider float values A0 = ofNoise(t), A1 = ofNoise(t+0.01),
and A2 = ofNoise(t+0.1) for different values of t, we will find that often A1
is closer to A0 than A2. Hence we can control the resultant smoothness of the graph
of ofNoise(t), built for discrete set of values t, by controlling the step of
incrementing these values. Contradictorily, two calls of ofRandom(0, 1)
generate two uncorrelated numbers, and there is no way to control their proximity.

Now let's see how to use Perlin noise in openFrameworks projects.

Using the ofNoise() function
openFrameworks has a built-in implementation of simplex noise, implemented in
the ofNoise(t) function. For example, the following code draws the Perlin noise
function, ofNoise(t), for t ranging from 0 to 10 on the screen:

ofSetColor(0, 0, 0);
for (int x=0; x<1000; x++) {
 float t = x * 0.01;
 float y = ofNoise(t);
 ofLine(x, 300, x, 300 - y * 300);
}

This is the example 13-PerlinNoise/01-PerlinGraph.

Appendix B

[323]

Run the code and you will see the following graph:

Now replace the line float y = ofNoise(t); with the following line:

float y = ofNoise(t + 493.0);

This code renders the noise function in the range [443, 453].

Considering the preceding graphs, you can note the following properties:

• The function values are from 0 to 1, and the mean value is clearly about 0.5.
Hence you can think about the noise function as describing the fluctuation of
some random parameter near its center value, equal to 0.5.

• These two graphs depict different ranges of t – [0, 10] and [443, 493]. They
look different but the scales of fluctuations in t are roughly the same for both
these (and actually, any other) ranges of the same width. This property is
called statistical homogeneity and means that the statistical properties of the
function in the range [t, t+Q] for any fixed and big constant Q does not depend
on any particular value of t. So you can get as many random functions as you
want by just considering the noise function shifted by some constant in t. For
example, ofNoise(t + 293.4) and ofNoise(t + 3996.4) will generate
two distinct and uncorrelated random values for a given t.

An interesting feature of this noise is that its value, ofNoise(t), is
equal to 0.5 for all the integer values of t. So do not wonder when you
obtain a constant output from ofNoise(t)—just check, maybe you
are accidentally using integer values for t.

Perlin Noise

[324]

You can use this function for randomly changing some parameters of the objects in
your project; for example, position, size, or angle. Normally, we don't use the pure
ofNoise(t) function, but a more complex formula.

float value = amplitude * ofNoise(timePosition + position0);

Here, amplitude defines the output range of the value, namely [0, amplitude];
position0 is a constant (for example, random); and timePosition is a value that
increases with time.

See a simple example of the implementation of this idea for controlling sound
volumes in The singing voices example section in Chapter 6, Working with Sounds.
Using Perlin noise for creating a knot curve and changing its color is shown in
The twisting knot example section in Chapter 7, Drawing in 3D.

Another interesting example is drawing a cloud of a hundred randomly flying
points. It can be done with the following code:

ofSetColor(0, 0, 0);
float time = ofGetElapsedTimef();
for (int i=0; i<100; i++) {
 float ampX = ofGetWidth();
 float ampY = ofGetHeight();
 float speed = 0.1;
 float posX0 = i * 104.3 + 14.6;
 float posY0 = i * 53.3 + 35.2;
 float x = ampX * ofNoise(time * speed + posX0);
 float y = ampY * ofNoise(time * speed + posY0);
 ofCircle(x, y, 10);
}

This is example 13-PerlinNoise/02-PerlinPoints.

Here, constants 104.3, 14.6, 53.3, and 35.2 were chosen quite arbitrarily—just to
obtain distinct values for posX0 and posY0. On running this, you will see a cloud of
slowly flying points:

Appendix B

[325]

See the further evolution of this example in the Dancing cloud example section in
Chapter 6, Working with Sounds.

By summing up several Perlin noises with different scales, it is possible to obtain
more interesting noises. See the openFrameworks example in the openFrameworks'
folder examples/math/noise1dOctaveExample. It sums up several noises and you
can see the resultant function.

There is a signed version of the ofNoise(t) function. It's a
function called ofSignedNoise(t) that returns a noise value
in the range [-1, 1]. The mean value of the function is zero. Actually,
ofSignedNoise(t) is just equal to 2.0*ofNoise(t) – 1.0.

Now we will see how to use multidimensional Perlin noise for generating textures
and other fields.

Space-coherent noise
There are a number of overloaded ofNoise() functions that depend on
two, three, or four parameters: ofNoise(x, y), ofNoise(x, y, z), and
ofNoise(x, y, z, t). They have behavior like ofNoise(t) but use several
input parameters. Their coordinates may be scaled as 2D or 3D space coordinates of
some point and may even include time. So such functions give a way for generating
2D, 3D, and 4D fields with coherently changing values that are static or evolving
with time. For example, the ofNoise(x, y) function can be used for drawing a
smooth random texture in the following way:

float scaleX = 0.007; //1.0 / scaleX is coherence in x
float scaleY = 0.008; //1.0 / scaleY is coherence in y

Perlin Noise

[326]

float posX0 = 593.2;
float posY0 = 43.7;
for (int y=0; y<500; y++) {
 for (int x=0; x<500; x++) {
 float value = ofNoise(x*scaleX+posX0, y*scaleY+posY0);
 ofSetColor(value*255, value*255, value*255);
 ofRect(x, y, 1, 1);
 }
}

This is example 13-PerlinNoise/03-PerlinTexture.

On running the code, you will see the following texture:

Now add the third parameter in the calling function ofNoise(), which increases
with time, and you will obtain a texture that slowly evolves with time.

float value = ofNoise(x*scaleX+posX0, y*scaleY+posY0,
 time*0.1 + 445.6);

This code is simple and great for demonstrating the idea. But it works extremely
slowly because we render each texture's pixel as a separate rectangle with size 1 × 1.
To obtain real-time performance, prepare the texture colors in the ofImage image
object and draw it in one step using image.draw() (see the Creating images section
in Chapter 4, Images and Textures).

Appendix B

[327]

The fastest way of generating textures is by using shaders; see
the A liquify distortion example section in Chapter 8, Using Shaders.
Though the example is about texture distortion with Perlin noise,
it is simple to change it for generating textures. Using shaders is
especially useful while generating really big textures in real time.

A similar technique can be used for generating values for evolving height maps of
3D surfaces (see The oscillating plane example section in Chapter 7, Drawing in 3D).

Summary
In this appendix we learned the basic principles of using Perlin noise. We have seen
examples of creating smooth random motion of objects and generating smooth
random textures that evolve with time.

Index
Symbols
2D graphics

creating 34
3D 183
3D drawing

about 186, 187
triangles cloud example 187-190

3d folder 16
3D graphics 32
3D objects

representing 184
3D point cloud

using 299
3D scene

rendering 184-186
<< Back button 316
_debug suffix 18

A
abstract functions 242
Abstract Wall 66
Active infrared stereo camera 282-284
adding mode 93
addon

about 311, 312
core addons 313
linking, to existing project 317
linking, to new project 314
non-core addons 313
used, in openFrameworks 313
using, in project 303

Addons: button 315
addons folder 16, 17
addRandomCircle() function 205, 206

addRandomRing() function 205
addTriangle() function 196
AIFF 146
algebraic functions 245, 246
algorithm parameters

amplification parameter 254
buffer damping parameter 254
threshold parameter 254

algorithms based on machine learning 266
aliasing effect 224, 260
alpha-blending 93
amplification parameter 254
anchor point 88
apps folder 16, 17
Asus Xtion camera 283
attraction force 78-80
attributes

working with 237
audioOut() function 157-166, 171, 175
audio-reactive project example 230, 231
audioReceived() function 169, 171
audio samples 145

B
background color

setting up 32-34
background depth image 290
binary images 241
blending 92
blobs 266
blurGaussian() 256
blurGaussian(winSize) function 256
blur(winSize) function 256
BMP 85
Boosting 242, 266

[330]

bornCount variable 76
bornRate parameter 76
bouncing ball example 149-152
Box2D physics library 81
Breakpoint 18
buffer damping parameter 254
Build button 13

C
calibrating variable 291
camera

live video 131
camera calibration 262
Central Processing Unit (CPU) 105
classical noise 321
clear() function 201, 244, 245
clearVertices() function 201
cnoise() function 227
Code::Blocks

Linux, installing with 15
URL 13

Code::Blocks (Windows) 12, 13
code structure

main.cpp 19, 20
testApp.cpp 21, 22
testApp.h 20, 21

color interpolation 130, 131
color modulation 90
color parameter 218
color planes

working with 248, 249
colors

about 44
modifications example 46, 47
operating with 45, 46

color spaces conversion
working with 248, 249

communication folder 16
computer vision 240
compute shaders

about 214
using 63

Contour analysis 265
control parameters 67, 68
control points 39
convertHsvToRgb() 249

convertRgbToHsv() 249
convertToRange(minValue,

maxValue) 257
coordinate system transformations

about 40
example 43, 44
functions 41

core addons
about 303, 313
ofx3DModelLoader 318
ofxAssimpModelLoader 318
ofxNetwork 318
ofxOpenCv 318
ofxOsc 318
ofxSvg 318
ofxThreadedImageLoader 318
ofxVectorGraphics 318
ofxXmlSettings 318

curves 184
CV_INTER_AREA 261
CV_INTER_CUBIC 261
CV_INTER_LINEAR 261
CV_INTER_NN 261

D
dancing cloud example 176-180
data

receiving, OSC protocol used 306
sending, OSC protocol used 304, 305

datamoshing effect 273
DC-offset removal 165
Debug mode 18
default constructor 69
depth buffer. See z-buffer
depth camera

about 282
Active infrared stereo camera 282
Passive stereo camera 282
Time-of-flight camera 282

depth images examples
ImageAndDepthMultDevice-Medium

example 287
ImageAndDepth-Simple example 286

deque class 76
deterministic chaos theory 56
digital audio samples 145

[331]

dilate() function 256
distortAmount parameter 232
draw1() function 52
draw() function 23, 150, 154, 161, 166, 169,

172, 179, 203, 206, 221, 225, 234, 237,
251, 258, 294

Drawing 31, 32
draw() method 23
draw(x, y, w, h) function 247
dt parameter 67
dynamic video mapping 299

E
eCenter 67
emitter 60, 67, 75-78
EmitVertex() function 235
empty folder 16
EndPrimitive() function 235
Eraser tool 92
erode() function 256
Euler method

about 71
URL 71

events folder 16
examples folder 17

F
FBO

used, for offscreen drawings 48-54
fbo.allocate() function 72
fbo.begin() 49
fbo.end() 49
FBO float values 73
fbo object 220
ffmpeg tool 114
filter 256
flagImageChanged() 248
float array

passing, to shaders 226
float parameter

passing, to shaders 223
float-valued fbo 50
fmod() function 142
fragment shader

about 213, 233
creating 217, 218

example 217
using 63
video effects, creating with 223

frame buffer object. See FBO
friction parameter 78
frontal faces 220
functions

drawing 247
used, for controlling drawing of

primitives 36, 37
used, for drawing primitives 34, 35
used, for manipulating image as whole 104

furry carpet example 235, 236

G
generateImg() function 270
GENERATE PROJECT button 316
generative art algorithm 50
geometrical matching. See Contour analysis
geometrical transformations

CV_INTER_AREA 261
CV_INTER_CUBIC 261
CV_INTER_LINEAR 261
CV_INTER_NN 261
mirror(flipY, flipX) function 261
of images 260
Perspective distortion removing

example 263-265
remap(mapX, mapY) function 263
resize(w, h) function 260
rotate(angle, centerX, centerY)

function 261
scaleIntoMe(mom, interpolationMethod)

function 261
scale(scaleX, scaleY) function 261
translate(shiftX, shiftY) function 261
warpPerspective(A, B, C, D) function 262

geometric primitives
about 34-37
example 35

geometry shader
about 213
furry carpet example 235, 236
using 64, 65, 235

getBrightness() function 46
getCurrentFrame() function 117

[332]

getCvImage() function 248
getDuration() function 117
getFloatPixelsRef() 248
getHue() function 46
getIsMovieDone() function 117
getIsPlaying() function 147
getLightness() function 46
getLoopState() function 118
getNumVertices() function 200
getPan() function 148
getPixelRef() method 118
getPixelsAsFloats() 248
getPixels() function 247
getPixelsRef() function 247
getPosition() function 147
getPositionMS() function 147
getSaturation() function 46
getShortPixelsRef() function 248
getSpeed() function 117, 148
getTextureReference() function 247
getTotalNumFrames() function 117
getVertex(i) function 200
getVolume() function 148
gl_Color variable 220
gl folder 16
gl_FragColor variable 215, 218
gl_FrontColor 220
global variable 67
GL_RGB32F_ARB 50, 73
GLSL types

URL 216
GLSL variables

URL 215
GPU technologies

using 63
Graphical User Interface. See GUI
graphics folder 16
Graphics Library Shading

Language (GLSL) 211
Graphics Processing Unit (GPU) 105, 211
gravity force

URL 151
GUI 81
gui folder 16

H
Haar-like features 242

hand.getWorldPosition() function 288
hand-tracking examples

HandTracking-Medium example 288
HandTracking-Simple example 287

HandTracking-Medium example 288
HandTracking-Simple example 287
Histogram of Orientated Gradients. See

HOG-method
history variable 72
HOG-method 266
horizontal slit-scan 129
HSV (Hue, Saturation, Value)

color space 249

I
image

creating 96-99
drawing 84-86
file formats 85
loading 84-86
manipulating, functions used 104
modifying 99-102
pixel color, obtaining 102-104
pixel color, setting 102-104
rotating 87-89
used, as mask 110, 111
used, as palette 111, 112
warping 107-110

ImageAndDepthMultDevice-Medium
example 287

ImageAndDepth-Simple example 286
image.bpp field 100
image.draw() 90, 248, 326
image.draw method 87
image file formats

about 85
BMP 85
JPG 85
PNG 85
TIFF 85

image filtering
about 256, 257
example 257-260

image.getPixels() function 99, 102, 105
image.getTextureReference() 105
image.grabScreen() function 57

[333]

image object 86, 264, 265
image processing

masking example 229
image.saveImage() method 86
image sequence

about 137, 138
example 138-142

image.setFromPixels() 102
image-to-sound transcoder example 163-168
image.update() function 99, 102
imshow() function 272
instability

playing with 54, 56
Install button 286
Intel Xeon Phi 62
interaction type 60, 61
interactive surfaces

creating 289-295
interpolationMethod parameter 261
inverseMapping function 278
invert() function 46, 257
invert() operation 257
isLoaded() function 117, 148
isPaused() function 117

J
JPG 85

K
keyPressed() function 295
keyPressed(key) function 24
keyReleased(key) function 24
Khronos Group

URL 240
Kuflex project

URL 66

L
LAN 301
lighting

enabling 193
linear interpolation 165
line segments

drawing 197

Linux
installing, with Code::Blocks 15

Linux Code::Blocks
URL 15

Linux Eclipse
URL 15

liquify distortion example 226, 227
live value 67
live video, camera

processing 131, 132
video synthesizer example 132-137

loadImage function 84
loadSound function 148
Local Area Network. See LAN
localhost 304
local network 301
loop sampler example 170-173

M
machine learning method

Boosting 266
SVM 266

Mac OS
installing, with Xcode 13, 14

m.addFloatArg() function 304
m.addIntArg() function 304
m.addStringArg() function 304
MadMapper 108
Magic Wand tool 92
main.cpp 19, 20
main() function 19-21, 215, 218, 232, 236
mapping mesh 110
marching cubes algorithm 82, 209
mask

about 110
image, using 110, 111

masking example 229
math folder 17
Mat object 272
memory optimization

ofTexture, using for 105, 106
mesh.addVertex() function 198, 199
mesh.addVertex(p) function 191
mesh.draw() 197
mesh.drawVertices() function 197

[334]

mesh.drawWireframe() function 197
mesh.getCentroid() function 206
mesh.getNumVertices() 200
mesh.setMode(mode) function 197
mesh.setupIndicesAuto() function 196
metaballs 82
methods

used, for searching objects in image 265
m.getNumArgs() function 306
microphone

using 168-170
microphone, using

loop sampler example 170-173
Microsoft Kinect camera 283
Microsoft Visual Studio 10-12
MIDI 302
mirror(flipY, flipX) function 261
moire 256
morphing

applying, to another image 278
optical flow, using for 276, 277

morphological dilation 256
morphological erosion 256
morphValue parameter 278
motion

detecting, from live video 254, 255
detecting, from movies 249-253

mouseDragged(x, y, button) function 24
mouseMoved() function 161
mouseMoved(x, y) function 24
mousePressed() function 295
mousePressed(x, y, button) function 24
mouseReleased(x, y, button) function 24
movies

motion, detecting from 249-253
MP3 146
MPEG streamclip utility 114
multi attribute 147
multiple core computing 62
multiple frames

processing 123
radial slit-scan example 124-129

N
Name: mySketch button 315
network address 302

Networking 301, 302
network router 301
Newton's law of motion

URL 151
NiTE 284
non-core addons

about 313
installing 313, 314
ofxMarchingCubes 319
OfxSyphon 319
URL 313

normals
computing, setNormals() function

used 194, 195
setting 193

NVIDIA CUDA 63, 214

O
obj array 270
objects

deforming, with vertex shader 231
searching, in image 265

ofBackground() 45, 49, 52
ofBackgroundGradient() function 32
ofBeginShape() function 57
ofCamera class 209
ofCircle(p, r) function 39
ofCircle(x, y, r) function 34
ofClamp() function 73, 152
ofClamp(v, v0, v1) function 29
ofColor() 45, 102
ofDisableAlphaBlending() function 74, 93
ofDisableLighting() function 198
ofDisableSmoothing() function 37
ofDrawBitmapString() function 57
ofEasyCam class 209
ofEnableAlphaBlending() function 74, 93
ofEnableBlendMode() function 93
ofEnableLighting() function 198
ofEnableSmoothing() function 37
ofEndShape() function 57
ofFbo class 49
ofFbo fbo object 51
ofFbo object 48, 222
ofFill() function 36, 186, 187
ofFloatImage class 96

[335]

offscreen drawings
FBO, using for 48-54

ofGetElapsedTimef() function 29, 33, 99
ofGetHeight() function 29, 32
ofGetWidth() function 29, 32
OF_GRADIENT_BAR 190
OF_GRADIENT_CIRCULAR 190
OF_GRADIENT_LINEAR 190
ofHideCursor() function 29
ofImage class 56, 96, 247
OF_IMAGE_COLOR 96
OF_IMAGE_COLOR_ALPHA 96
OF_IMAGE_GRAYSCALE 96
ofImage object 84
ofLight class 193, 209
ofLine() 37, 49
ofLine(p1, p2) function 39
ofLine(x1, y1, x2, y2) function 34
ofMap() function 33, 99
ofMap(v, v0, v1, out0, out1) function 29
ofMesh

lighting, enabling 193
normals, setting 193
using 191, 192

ofMesh class 191, 197
ofMesh object 62
ofNoFill() function 36, 186, 187
ofNoise() function 142

about 326
using 322-325

ofNoise(t) function 322-325
ofNoise(x, y) function 325
ofPoint

about 37
control points, using 39, 40
operating, with points 38
using 37

ofPoint class 186
ofPoint object 288
ofPopMatrix() 41, 87, 187, 234
OF_PRIMITIVE_LINES 197
OF_PRIMITIVE_POINTS 197
OF_PRIMITIVE_TRIANGLES 197
ofPushMatrix() 41, 87, 187
ofRandom(a, b) function 29
ofRect(p, w, h) function 39
ofRect(x, y, w, h) function 34

ofRotate() 87, 88
ofRotate(angle) function 41
ofRotate(angle, x, y, z) function 187
ofRotate() function 187
ofScale() 88, 195
ofScale(scaleX, scaleY) function 41
ofScale(x, y, z) function 187
ofSetBackgroundAuto(false) function 48
ofSetBackground() function 32, 33
ofSetCircleResolution(res) function 37
ofSetColor() 37, 45, 91, 186, 199
ofSetColor() function 90, 198, 220
ofSetColor(r, g, b) function 36
ofSetFrameRate(rate) parameter 22
ofSetFullscreen(v) parameter 23
ofSetLineWidth() function 186
ofSetupOpenGL() function 20
ofSetVerticalSync(v) parameter 23
ofSetWindowShape() function 24
ofSetWindowShape(w, h) parameter 23
ofShader object 220
ofShader objects 222
ofShortImage class 96
ofShowCursor() function 29
ofSignedNoise(t) 325
ofSoundPlayer class 146
ofSoundStopAll() 148
ofSoundUpdate() 146, 150
ofTexture

about 106
used, for memory optimization 105, 106

ofThread class 62
ofToFloat(s) function 29
ofToInt(s) function 29
ofToString(v) function 29
ofTranslate() 88
ofTranslate(p) function 41
ofTranslate(x, y) function 41
ofTranslate(x, y, z) function 187
ofTriangle() 191
ofTriangle(p1, p2, p3) function 39
ofTriangle(x1, y1, x2, y2, x3, y3)

function 34
ofTrueTypeFont class 57
ofURLFileLoader class 308
ofVboMesh 64
ofVBOMesh 191

[336]

ofVertex() function 57
ofx3DModelLoader 318
ofxAssimpModelLoader 318
ofxBox2d addon

URL 81
ofxCvColorImage class 241, 244
ofxCvColorImage image 268
ofxCvContourFinder class

about 242, 265, 266
used, for finding contours 266, 267

ofxCvFloatImage class 242-244, 248
ofxCvGrayscaleImage class 241, 244, 257
ofxCvHaarFinder class 242
ofxCvImage class 242
ofxCv images

about 243
algebraic operations, with images 245, 246
algorithm parameters 254
blurGaussian(winSize) function 256
blur(winSize) function 256
color planes, working 248, 249
color spaces conversion, working 248, 249
convertToRange(minValue,

maxValue) 257
dilate() function 256
erode() function 256
functions, drawing 247
initializing 243-245
invert() operation 257
motion, detecting from live video 254, 255
motion, detecting from movies 249-253
pixels, accessing 247, 248
working with 243

ofxCvShortImage class 242-244
ofxMarchingCubes 319
ofxMarchingCubes addon

URL 209
ofxMSAFluid 61
ofxNetwork 318
ofxNetwork addon 307
ofxOpenCv

about 318
using 241, 242

ofxOpenCv addon 241, 247, 258, 267
ofxOpenNI addon

installing 284, 285
URL 285

ofxOpenNI examples
depth images examples 286
hand-tracking examples 287
user tracking examples 288

ofxOpenNIHand object 287
ofxOsc 318
ofxOsc addon 303
ofxOscBundle object 305
ofxSvg 318
OfxSyphon 319
ofxSyphon addon 310
ofxTCPClient client object 308
ofxTCPServer server object 308
ofxThreadedImageLoader 318
ofxVectorGraphics 318
ofxXmlSettings 318
ofxXmlSettings addon, adding

Code::Blocks (Linux), 15, 16, 17
Code::Blocks (Windows), 12, 13
Visual Studio (Windows), 10, 11, 12

Xcode (Mac OS X), 13, 14,
ofxXmlSettings class 314
OK button 315
online shader sandboxes

URL 212
OpenCL 63, 214, 240
Open Computer Vision. See OpenCV
OpenCV 240, 271, 272
OpenCV functions

Optical flow 273
using 271, 272

OpenCV library 239
openFrameworks

about 7, 8, 186
architectural specifics 8
installing 10
installing, on Linux with Code::Blocks 15
installing, on Mac OS with Xcode 13, 14
installing, on Windows 10, 11
license, URL 9
project, creating 25-28
URL 7
use cases 8, 9

openFrameworks folders
about 16
addons folder 17
apps folder 17

[337]

examples folder 16, 17
OpenGL 185, 240
OpenGL's Transform Feedback feature

about 63
URL 214

OpenNI
URL 283

openNIDevice object 286, 291
openNIDevice.setRegister(true)

function 287
Open Sound Control. See OSC
Optical flow

about 123, 273
applications 273
used, for morphing 276, 277
video morphing example 274-276

OSC
about 302
using 307

oscillating plane example 201-204
OSC protocol

used, for receiving data 306
used, for sending data 304, 305
using 303

P
palette

image, using 111, 112
parallax effect 282
param object 70
Params::setup() function 68
Params class 79
particle

about 66
control parameters 67, 68
functions, defining 69-71
implementing, in project 72-74

Particle::draw() 71
Particle::setup() function 69
Particle::update() function 70, 79
Particle class 66, 68
particles 184
particle systems

about 60
computing 62, 63
creating 65, 66

interaction types 60, 61
rendering 63-65

Passive stereo camera 282
PCL library 284
Perlin noise

about 321, 322
advantages 322
liquify distortion example 226, 227
used, in shaders 226

Perspective distortion
about 263-265
removing, example 263-265

phase parameter 232
Ping-Pong FBO method 63, 237
pixel operations 256
pixels

about 31, 83
accessing 247, 248

p.length() function 38
PNG 85
p.normalize() function 38
points

drawing 198
point sprites

using 64
port number 302
PrimeSense Carmine camera 283
probability distribution 69
Processing sketches

URL 58
programming environments

Code::Blocks (Windows) 12, 13
Microsoft Visual Studio 10-12

project
addons, linking to 314
addon, using 303
code structure 19
creating, from existing example 24
creating, Project Generator used 25, 315-317
file structure 18, 19
particle, implementing 72-74
running 296-298
shaders, embedding 220-222
vertex shader, using 233, 234

Project Generator
about 285
project, creating 25

[338]

used, for creating new project 315-317
Project Generator wizard 314
project screen

grabbing 56
protocols

used, for data transmission 302
pseudo-random behavior 322
Pulse Code Modulation (PCM) 145
Pulse Width Modulation. See PWM
PWM 158
PWM synthesis example 158-162

Q
quads 184

R
radial slit-scan

about 124-129
color interpolation 130, 131
horizontal slit-scan 129

Random Access Memory (RAM) 105
randomPointInCircle() function 69
randomPointInCircle(maxRad) function 69
raster graphics 31
raster images 83
ray tracing 185
Rebuild command 162
receiver.setup() function 306
recorded sample

saving, to file 174, 175
Release mode 18, 77, 295
remap() function 276, 277
remap(mapX, mapY) function 263
removeVertex(i) function 201
Render 309
replacing colors example 120-123
repulsion force 78-80
resize() function 244
resize(w, h) function 260
RGB (Red, Green, Blue) color space 249
rotate(angle, centerX, centerY) function 261
rotate parameter 75
Run button 13

S
sample.play() 147
saturation arithmetic 246
scaleIntoMe(mom, interpolationMethod)

function 261
scale(scaleX, scaleY) function 261
sender.sendMessage() 304
sender.setup() function 304, 305
setBrightness() 46
setFrame(frame) function 117
setHsb(hue, saturation, brightness)

function 46
setHue(hue) function 46
setLoop(looping) function 147
setLoopState(state) function 118
setMultiPlay(multi) function 147
setNativeScale() function 272
setNormals() function

about 193, 201, 205, 208
used, for computing normals 194, 195

setPan(pan) function 148
setPaused(bPause) function 117
setPaused(pause) function 147
setPositionMS(ms) function 147
setPosition(pos) function 117, 147
setSaturation() 46
setSpeed(speed) function 117, 148
setUniform1f function 224
setup() function 22, 23, 69, 125, 139, 149, 153,

164, 171, 177, 188, 202, 205, 221, 258,
291

set(value) function 245
setVertex(i, p) function 200
setVolume(vol) function 148
setVolume(volume) method 118
shader.begin() 222
shader.enable() 228
shader.end() 222
shader.load() 221
shader.load() function 236
shader object 220
shaders

about 211, 212
audio-reactive project example 230, 231

[339]

compute shader 214
debugging 223
embedding, in project 220-222
float array, passing to 226
float parameter, passing to 223
fragment shader 213
geometry shader 213
images, processing 228
Perlin noise, using 226, 227
simple geometrical distortion

example 224, 225
using 213, 214
vertex shader 212
working 223

shader's code
structure 215-217

sharp edges
drawing 196, 197

simple geometrical distortion
example 224, 225

simplex noise 321
sin(...) function 34
singing voices example 152-155
single core computing 62
single video frame

processing 118-122
replacing colors example 120-123
vertical lines image example 119, 120

slit-photography 124
sound

about 145
generating 155-157
spectral data, obtaining from 175, 176

sound file formats
AIFF 146
MP3 146
WAV 146

sound folder 17
sound, generating

image-to-sound transcoder
example 163-168

PWM synthesis example 158-162
sound sample

about 145
bouncing ball example 149-152
playing 146-148
singing voices example 152-154

soundStream.close() function 157
soundStream.listDevices() function 157, 174
soundStream.start() function 157
soundStream.stop() function 157
space-coherent noise 325-327
spectral data

obtaining, from sound 175, 176
spectrum 175
spinning force 78-80
square wave 159
statistical homogeneity 323
stop() function 117, 147
streaming images

example 308-310
TCP protocol, using for 307, 308

structured randomness effect 152
SVM 266
swizzle 216
Syphon 310
Syphon protocol 108, 319

T
TCP 303
TCP/IP 301
TCP protocol

used, for streaming images 307, 308
Template matching 265
testApp::audioOut function 156
testApp::audioReceived function 169
testApp::draw() function 27, 32-49, 74, 84,

192, 251, 275
testApp::keyPressed() function 57
testApp::setup() function 26, 32, 48, 51, 72,

76, 103, 156, 274, 275, 304, 305, 306
testApp::update() function 26, 40, 52, 73, 76,

97, 99, 250, 306
testApp class 21, 39, 48, 67, 72, 75, 84, 149,

156, 168, 188, 191, 220, 258, 274, 290,
304, 306

testApp.cpp
draw() function 23
other functions 24
setup() function 22, 23
update() function 23

testApp.h 20, 21
testApp object 156, 169

[340]

texture2DRect function 218
texture.draw() method 110
textures 105
texturing 199
thread 62
threshold() function 257
threshold parameter 254
TIFF 85
time displacement 123
Time-of-flight camera 282
time parameter 223, 225
time step 67
time variable 225
Tracker 309
trails 72
transcoding 163
Transform Feedback

about 214
URL 214

translate(shiftX, shiftY) function 261
Transmission Control Protocol. See TCP
Transmission Control Protocol/Internet

Protocol. See TCP/IP
transparency 91-95
triangles cloud example 187-191
twisting knot example 204-208

U
UDP 303
uncleared background

drawing with 48
undistort function 263
uniform keyword 223
uniform parameter 228
uniform sampler2DRect parameter 228
unloadSound() function 148
unsigned short type 96
updateBall() function 150-152
update() function 23, 67, 73, 126, 139, 150,

154, 164, 169, 172, 178, 189, 202, 204,
205, 208, 221, 233, 251, 258, 268, 291,
292, 298

updateTexture() 247, 248
UserAndCloud-Medium example 288

UserAndCloud-Simple example 288
user tracking examples

UserAndCloud-Medium example 288
UserAndCloud-Simple example 288

utility functions 29
utils folder 17

V
vector field 273
vector graphics 31
vector images 83
vel.rotate() function 70
velRotate value 70
Verlet integration

about 71
URL 71

Vertex Buffer Object (VBO) 191
vertex shader

about 212, 219, 220, 231, 232
objects, deforming with 231
using 62
using, in project 233, 234

vertical lines image example 119, 120
vertices

coloring 198
working with 200, 201

video
about 113
basics 113, 114
bright objects, searching 267-271
mapping 107-110
motion, detecting from 254, 255

video effects
creating, with fragment shaders 223

video file
playing 115, 116

video folder 17
video.isFrameNew() function 116
video morphing example 274-276
video playback

controlling 117
Viola-Jones algorithm 266
Viola-Jones method 242
void main() function 215

[341]

wrapper 312

X
Xcode

Mac OS, installing with 13, 14

Z
z-buffer 185
ZigBee 301

W
warpPerspective() 263
warpPerspective(A, B, C, D) function 262
WAV 146
webgl-noise library

URL 226
windowResized(w, h) function 24
wireframe drawing 197
Wireless LAN. See WLAN
WLAN 301

Thank you for buying
Mastering openFrameworks:
Creative Coding Demystified

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licenses, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and
you would like to discuss it first before writing a formal book proposal, contact us; one
of our commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Cinder – Begin Creative Coding
ISBN: 978-1-84951-956-4 Paperback: 146 pages

A quick introduction into the world of creative
coding with Cinder through basic tutorials and a
couple of advanced examples

1. More power – Cinder is one of the most
powerful creative coding engines out there
and it will be hard to find a better one for your
professional grade project

2. Do it fast – each section should not take longer
than one hour to complete

3. We give you the tools and it is up to you
what you do with them – we won't go into
complicated algorithms, but rather give you the
brushes and paints so you can paint the way
you already know

Cinder Creative Coding Cookbook
ISBN: 978-1-84951-870-3 Paperback: 352 pages

Create compelling animations and graphics with
Kinect and camera input, using one of the most
powerful C++ frameworks available

1. Learn powerful techniques for building creative
applications using motion sensing and tracking

2. Create applications using multimedia content
including video, audio, images, and text

3. Draw and animate in 2D and 3D using fast
performance techniques

Please check www.PacktPub.com for information on our titles

Nikki
Typewritten Text
UPLOADED BY [STORMRG]

Processing 2: Creative Coding
Hotshot
ISBN: 978-1-78216-672-6 Paperback: 266 pages

Learn Processing with exciting and engaging projects
to make your computer talk, see, hear, express
emotions, and even design physical objects

1. Teach your computer to create physical objects,
visualize data, and program a custom hardware
controller

2. Create projects that can be run on a variety of
platforms, ranging from desktop computers to
Android smartphones

3. Each chapter presents a complete project and
guides you through the implementation using
easy-to-follow, step-by-step instructions

Processing 2: Creative
Programming Cookbook
ISBN: 978-1-84951-794-2 Paperback: 306 pages

Over 90 highly-effective recipes to unleash your
creativity with interactive art, graphics, computer
vision, 3D, and more

1. Explore the Processing language with a broad
range of practical recipes for computational art
and graphics

2. Wide coverage of topics including interactive
art, computer vision, visualization, drawing in
3D, and much more with Processing

3. Create interactive art installations and learn to
export your artwork for print, screen, Internet,
and mobile devices

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	Foreword
	About the Author
	Acknowledgement
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: openFrameworks Basics
	About openFrameworks
	Use cases

	Installing openFrameworks and running your first example
	Installing on Windows
	Microsoft Visual Studio
	Code::Blocks (Windows)

	Installing on Mac OS with Xcode
	Installing on Linux with Code::Blocks
	openFrameworks' folders
	The examples folder
	The apps folder
	The addons folder

	File structure of a project
	Code structure of a project
	main.cpp
	testApp.h
	testApp.cpp
	setup()
	update()
	draw()
	Other functions

	Creating a new project
	Creating a project from an existing example
	Creating a project using Project Generator

	Creating your first project – the Pendulum example
	Running the book's examples
	Basic utility functions
	Summary

	Chapter 2: Drawing in 2D
	Drawing basics
	The background color of the screen
	Pulsating background example

	Geometric primitives
	The simplest example of a flower
	Controlling the drawing of primitives

	Using ofPoint
	Operations with points
	Using control points example

	Coordinate system transformations
	Flower with petals example

	Colors
	Operations with colors
	Color modifications example

	Drawing with an uncleared background
	Using FBO for offscreen drawings
	Spirals example
	Playing with numerical instability

	Screen grabbing
	Additional topics
	Summary

	Chapter 3: Building a Simple Particle System
	The basics of particle systems
	Interaction types
	Computing particles' physics
	Rendering particles
	Creating a particle system – summary

	A single particle
	Control parameters
	Defining the particle functions
	Implementing a particle in the project

	An emitter
	The attraction, repulsion, and spinning forces
	Graphical user interface
	Additional topics
	Summary

	Chapter 4: Images and Textures
	Raster and vector images
	Loading and drawing an image
	Rotating images
	Color modulation
	Transparency
	Creating and modifying images
	Creating images
	Modifying images
	Working with a color of a single pixel
	The functions for manipulating the image as a whole

	Using ofTexture for memory optimization
	Image warping and video mapping
	Using images for internal calculations
	An image as a mask
	An image as a palette

	Summary

	Chapter 5: Working with Videos
	Video basics
	Playing a video file
	Controlling the video playback
	Processing a single video frame
	The vertical lines image example
	The replacing colors example

	Processing multiple frames
	Radial slit-scan example
	Horizontal slit-scan
	Discussing color interpolation

	Processing a live video from the camera
	The video synthesizer example

	Using image sequence
	Using image sequence example

	Summary

	Chapter 6: Working with Sounds
	Sound basics
	Playing sound samples
	The bouncing ball example
	The singing voices example

	Generating sounds
	The PWM synthesis example
	Image-to-sound transcoder example

	Using a microphone
	The loop sampler example
	Saving a recorded sample to the file

	Getting spectral data from sound
	Dancing cloud example

	Summary

	Chapter 7: Drawing in 3D
	3D basics
	Representation of 3D objects
	3D scene rendering

	Simple 3D drawing
	The triangles cloud example

	Using ofMesh
	Enabling lighting and setting normals
	Computing normals using the setNormals() function

	Drawing sharp edges
	Drawing line segments and points
	Drawing line segments
	Drawing points

	Coloring the vertices
	Texturing
	Working with vertices
	The oscillating plane example
	The twisting knot example

	Additional topics
	Summary

	Chapter 8: Using Shaders
	Basics of shaders
	Types of shaders
	When to use shaders

	Structure of a shader's code
	A simple fragment shader example
	Creating the fragment shader
	The vertex shader
	Embedding shaders in our project
	Debugging shaders

	Creating video effects with fragment shaders
	Passing a float parameter to a shader
	A simple geometrical distortion example

	Passing the float array to the shader
	Using Perlin noise in shaders
	A liquify distortion example

	Processing several images
	A masking example

	An audio-reactive project example

	Deforming objects with a vertex shader
	Vertex shader
	Fragment shader

	Using vertex shader in our project
	Using a geometry shader
	The furry carpet example

	Additional topics
	Summary

	Chapter 9: Computer Vision with OpenCV
	Understanding computer vision and OpenCV
	Using ofxOpenCv
	Working with ofxCv images
	Image initializing
	Algebraic operations with images
	Drawing functions
	Access to pixels
	Working with color planes and color spaces conversion
	Motion detection from movies
	Discussing the algorithm's parameters
	Motion detection from live video

	Image filtering
	The image filtering example

	Geometrical transformations of images
	Perspective distortion removing example

	Searching for objects in an image
	Using the ofxCvContourFinder class for finding contours
	An example for searching bright objects in video

	Using OpenCV functions
	Optical flow
	Video morphing example

	Summary

	Chapter 11: Networking
	Chapter 10: Using Depth Cameras
	Depth camera basics
	Active infrared stereo cameras

	Installing the ofxOpenNI addon
	ofxOpenNI examples
	Working with examples of depth images
	Hand-tracking examples
	User tracking examples

	Creating interactive surface
	Running the project

	Additional topics
	Summary

	Networking basics
	Using OSC protocol
	Sending data
	Receiving data
	Typical schemes of OSC usage

	Using TCP protocol for streaming images
	The streaming images example

	Summary

	Appendix A: Working with Addons
	Addons basics
	Addons in openFrameworks
	Installing a non-core addon

	Linking addons to a new project
	Using Project Generator

	Linking an addon to an existing project
	List of selected addons
	Summary

	Appendix B: Perlin Noise
	Perlin noise basics
	Using the ofNoise() function
	Space-coherent noise
	Summary

	Index
	Uploaded by [StormRG]

